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We study the spectral function of interacting one-dimensional fermions for an integrable lattice model away
from half-filling. The divergent power-law singularity of the spectral function near the single-particle or
single-hole energy is described by an effective x-ray edge type model. At low densities and for momentum near
the zone boundary, we find a second divergent singularity at higher energies which is associated with a
two-particle bound state. We use the Bethe ansatz solution of the model to calculate the exact singularity
exponents for any momentum and for arbitrary values of chemical potential and interaction strength in the
critical regime. We relate the singularities of the spectral function to the long-time decay of the fermion
Green’s function and compare our predictions with numerical results from the time-dependent density-matrix
renormalization group �tDMRG�. Our results show that the tDMRG method is able to provide accurate time
decay exponents in the cases of power-law decay of the Green’s function. Some implications for the line shape
of the dynamical structure factor away from half-filling are also discussed. In addition, we show that 85% of
the total spectral weight in the zero field Heisenberg model near wave-vector q=� is given by the two-spinon
contribution.
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I. INTRODUCTION

The single-particle spectral function provides direct infor-
mation about the elementary excitations of a system. A re-
cent experiment1 has demonstrated the possibility of measur-
ing the spectral function of strongly interacting cold atomic
gases using momentum-resolved radio-frequency
spectroscopy.2 This technique can be applied to various
highly controllable realizations of condensed-matter systems,
motivating theoretical predictions for the line shapes which
can be measured in such experiments.

An example of interaction-induced exotic behavior re-
flected in the single-particle spectral function is that of one-
dimensional �1D� fermionic systems. 1D metals distinguish
themselves from higher-dimensional Fermi liquids by the ab-
sence of stable quasiparticles in the low-energy regime,3 in
which they are generally described as Luttinger liquids.4

While in a Fermi liquid the main effect of weak repulsive
interactions on the spectral function is to broaden the quasi-
particle peak,5 in a Luttinger liquid the peak is replaced by
an asymmetric power-law singularity above the single-
particle energy, with an exponent which depends on the in-
teraction strength.6,7 The case of spin-1/2 fermions, for
which two spin-charge separated singularities are predicted,
is relevant for quasi-1D conductors.8 The simpler case of
spinless fermions, which shall be the subject of this paper,
can be realized in fully spin-polarized ultracold fermionic
gases.9

The Luttinger liquid result for the spectral function is only
asymptotically exact in the low-energy limit because it relies
on the approximation of linear dispersion of the particle and
hole excitations about the Fermi points. It is known that this
approximation yields the correct long-distance asymptotic
behavior of correlation functions because band curvature
terms in the Hamiltonian are formally irrelevant.4 However,

recently it has been pointed out that dispersion nonlinearity
can modify the line shape of dynamical correlation functions
in the vicinity of the single-particle energy, �=��k�.10,11 In
fact, in the case of weakly interacting spinless fermions with
parabolic dispersion, the support of the spectral function
A�k ,�� extends below the single-particle energy. Khodas et
al.11 showed that for generic two-body interactions, the cou-
pling of the single particle to a continuum of excitations with
multiple particle-hole pairs gives rise to a decay rate and
rounds off the singularity on the single-particle energy. In
one dimension, the decay rate 1 /� is remarkably small be-
cause it depends on three-body scattering processes. For mo-
mentum k near and above the Fermi momentum kF, it van-
ishes as 1 /��V0

2�V0−Vk−kF
�2�k−kF�4 /m3vF

6 , where Vq is the
Fourier transform of the interaction potential, VF is the Fermi
velocity and m is the effective mass. For k�kF, the other
energy scale set by band curvature is ��= �k−kF�2 /m. For
��−��k���1 /�, the particle spectral function resembles the
Lorentzian shape expected for a Fermi liquid with quasipar-
ticle decay rate 1 /�. For 1 /�� ��−��k�����, the spectral
function assumes the form of a two-sided power-law singu-
larity with a different exponent than the one predicted by
Luttinger liquid theory. The nature of this power law in the
vicinity of the single-particle energy is understood by anal-
ogy with the problem of the x-ray edge singularity in
metals.10 The power law with the Luttinger liquid exponent
is only recovered for ����−��k��kF

2 /m. The crossover
between the two power laws is described by a universal scal-
ing function of ��−��k�� /��.12

Adding a quadratic term to the dispersion also breaks
particle-hole symmetry. In general, the hole contribution to
the spectral function becomes qualitatively different from the
particle contribution once band curvature effects are taken
into account. In the continuum model, the single hole with
momentum −kF�k�kF is stable since it coincides with the
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lower threshold of the multiparticle continuum. As a result,
there is an exact power-law singularity at the energy of the
single hole. However, the exponent in the range ��−��k��
��� is again not the one predicted by Luttinger liquid
theory.11

The study of the singularities of spectral functions using
x-ray edge type effective models is not limited to low ener-
gies or to weak interactions. In fact, in the case of integrable
models it is even possible to compute exact exponents and
energy thresholds for arbitrary momentum and interaction
strength. The key is to extract these parameters from the
exact finite-size spectrum calculated by Bethe ansatz
�BA�.13,14 The phase shifts that appear in the finite-size spec-
trum fix the parameters of the effective-field theory, which
can then be used to calculate correlation functions. This was
done for the edge singularities of the dynamical structure
factor of the spin-1/2 XXZ chain,15 or equivalently for spin-
less fermions on a lattice,16 and for both the dynamical struc-
ture factor and the spectral function of interacting bosons.17

The idea of extracting exponents of finite-energy spectral
functions from the BA had appeared earlier in the pseudof-
ermion dynamical theory for the 1D Hubbard model.18 The
field theory prediction for the singular features of the spectral
function can be combined with numerical methods such as
the time-dependent density-matrix renormalization group
�tDMRG� �Ref. 19� to produce high-resolution line shapes.15

Numerical results for the spectral function of the inte-
grable model of spinless fermions on a lattice should thus
offer a quantitative test for the predictions of effective x-ray
edge models, in particular for the line shape proposed by
Khodas et al.11 Two remarks are in order. The first one is that
integrable models are nongeneric in the sense that they pos-
sess an infinite number of local conserved quantities.20 What
makes these models amenable to the BA is precisely that all
scattering processes can be factorized into a series of two-
body collisions. It is not clear whether integrable models can
have a nonzero decay rate 1 /� which smooths out the singu-
larities of the spectral function. In principle, the question of a
small versus vanishing decay rate due to interactions can be
addressed experimentally since cold atom systems have been
shown to exhibit very low dissipation and to be approxi-
mately described by integrable models.21

The second difference from the continuum model is that
placing the particles in a one-dimensional lattice introduces
effects which are not observed in free space. A noteworthy
example is the appearance of stable repulsively bound states,
which has been demonstrated experimentally in the case of
bosons.22 Bound molecules of spin-polarized fermions have
been created artificially by sweeping across a p-wave Fesh-
bach resonance.23 “Antibound” p-wave molecules in the case
of repulsive interactions should arise naturally as excited
states in a lattice. An important question is whether these
bound states can produce a strong response in the single-
particle spectral function.

The purpose of this work is to study the spectral function
for the integrable lattice model of 1D spinless fermions with
repulsive nearest-neighbor interaction. We are particularly
interested in the regime of high energies and strong interac-
tions, where lattice effects are most important.

The paper is organized as follows. In Sec. II, we discuss
the kinematics of the model with a cosine dispersion. In Sec.

III, we present the effective x-ray edge Hamiltonian which
describes the behavior of the spectral function near the
single-particle or single-hole energy. In Sec. IV, we show
that repulsively bound states can give rise to additional di-
vergent singularities at high energies, which are more pro-
nounced at low densities and for momentum near the zone
boundary. In Sec. V, we address the effects of integrability on
the spectral function and on the long-time decay of the par-
ticle Green’s function. We show that the broadening of the
singularity on the single-particle energy in the regime con-
sidered by Khodas et al. can be recovered by adding an
irrelevant interaction term to the effective Hamiltonian. In
addition, we argue that in the integrable lattice model a
single particle with low velocity can have a nonzero decay
rate due to two-body scattering processes. In Sec. VI, we
derive the formulas for the exact singularity exponents using
the BA solution. In Sec. VII, we compare the analytical pre-
dictions for the long-time decay of the fermion Green’s func-
tion with high-precision data from the tDMRG method. In
Sec. VIII, we discuss the implications of our results for the
dynamical structure factor away from half-filling. Some con-
cluding remarks are offered in Sec. IX. There are, in addi-
tion, three appendices. Appendix A contains the detailed
derivation of the finite-size spectrum from BA. Appendix B
proves the equivalence of our formulas for the singularity
exponents to those of Ref. 16. Finally, in Appendix C we
show that 85% of the total spectral weight in the zero field
Heisenberg model near wave-vector q=� is given by the
two-spinon contribution �c.f. Ref. 24�.

II. KINEMATICS OF THE LATTICE MODEL

We consider the model of spinless fermions with nearest-
neighbor interaction

H = �
j=1

L 	− �� j
†� j+1 + � j+1

† � j� + V
nj −
1

2
�
nj+1 −

1

2
� − 	nj� .

�2.1�

Here, � j is the operator that annihilates a fermion at site j, L
is the number of sites, taken to be even, V
0 is the strength
of the repulsive interaction, nj =� j

†� j is the number operator
at site j, and 	 is the chemical potential. The lowest-energy
state for N fermions is unique if we impose periodic �antipe-
riodic� boundary conditions for N odd �even�. At half-filling,
n�nj�=1 /2, the Hamiltonian is invariant under the particle-
hole transformation � j→ �−1� j� j

†.
The Hamiltonian of Eq. �2.1� is equivalent to the aniso-

tropic �XXZ� spin-1/2 chain and is BA integrable.25 The
ground-state phase diagram as a function of V and 	 is
known.20,26 In this paper we will concern ourselves with the
region 0�V�2 and �	��2+V, where the system is in a
gapless phase with power-law decaying equal-time-
correlation functions and low-energy physics described by
the Luttinger model.3

The fermion spectral function is defined as
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A�k,�� = −
1

�
Im Gret�k,�� , �2.2�

where

Gret�k,�� = − i�
0

�

dtei��+i�t���k�t�,�k
†�0��� �2.3�

is the retarded single-particle Green’s function.27 Here �k
=� je

−ikj� j annihilates a fermion with momentum k. The
spectral function contains both particle and hole contribu-
tions

A�k,�� = Ap�k,�� + Ah�k,�� , �2.4�

which can be written in the form

Ap�k,�� = �
�

�����k
†�0��2��� − E� + E0� , �2.5�

Ah�k,�� = �
�

�����k�0��2��� + E� − E0� , �2.6�

where E0 is the ground-state energy and ��� is an exact
eigenstate of Hamiltonian �2.1� with energy E�.

In the noninteracting, V=0 case, Hamiltonian �2.1� re-
duces to the tight-binding model

H0 = �
k

��0��k��k
†�k, �2.7�

where ��0��k�=−2 cos�k�−	 is the free fermion dispersion
and k� �−� ,��. The ground state is constructed by filling up
the single-particle states up to the Fermi level, ��0��kF�=0. In
terms of fermion density, the Fermi momentum reads kF
=�n. Only excited states with a single particle with momen-
tum k above the Fermi level couple to the ground state via
the operator �k

† and contribute to Ap�k ,��. As a result, for
V=0

Ap
�0��k,�� = ���k� − kF���� − ��0��k�� . �2.8�

Likewise, for the hole contribution,

Ah
�0��k,�� = ��kF − �k����� − ��0��k�� . �2.9�

Therefore, in the noninteracting case, the spectral function is
given by a delta function peak at the energy of the single
particle �for kF� �k���� or single hole �for �k��kF�.

In the interacting case, there are nonzero matrix elements
between the ground state and excited states with multiple
particle-hole pairs, which then contribute to the spectral
function. Hereafter we consider the case kF�� /2 �	�0�.
�From this the case kF
� /2 can be understood by exchang-
ing particles and holes.� Since A�k ,��=A�−k ,��, we also
assume 0�k��. Although the renormalized dispersion may
deviate from the cosine form �unlike the case of parabolic
dispersion protected by Galilean invariance; c.f. Ref. 11�, in
this section we assume a cosine dispersion in order to discuss
the support of A�k ,��. This is approximately valid in the
limit of weak interaction. �However, the discussion does not
depend qualitatively on this assumption; the important fea-

ture is simply the existence of a single inflection point above
the Fermi surface. The exact dispersion can be calculated
from the BA, as will be done in Sec. VII.�

Let us first focus on the particle contribution Ap�k ,��. For
nonzero interactions, Ap�k ,�� is always nonzero below the
energy of the single-particle excitation. Below half-filling,
the positive curvature of the dispersion below the Fermi
points implies that the minimum energy for fixed total mo-
mentum k must correspond to a state with �r�+1 particles at
the Fermi point with momentum �kF, �r�−1 holes at the
Fermi point with momentum �kF, and one deep hole with
momentum −kF�kh

�r��kF such that

�2rkF − kh
�r��mod 2� = k . �2.10�

Excitations with a single high-energy particle or hole can
be labeled by three numbers �NL ,NR ,Nd�. NL�NR� is the num-
ber of particles created near the left �right� Fermi point;
NL,R
0 denotes particles and NL,R�0 denotes holes. Nd=1
in the case of a high energy particle and Nd=−1 in the case
of a high energy hole. The excitations that contribute to
Ap�k ,�� have charge +1, i.e., NL+NR+Nd=1. For instance,
the excitations that define the deep hole thresholds in Eq.
�2.10� are labeled �−r+1,r+1,−1� �see Fig. 1�.

Figure 2 shows the support of the spectral function for
two rational values of kF /�, kF /�=1 /5, and kF /�=2 /5.
Since in the lattice momentum is only defined mod 2�, for
every k value there is an infinite number of deep-hole-type
excitations, corresponding to different choices of r, such that
Eq. �2.10� is verified. Nonetheless, for kF /� rational, for
general k there is a finite lower threshold for the support of
Ap�k ,��. The reason is that for kF /�= p /q �p ,q integers�, the
energy of the deep hole thresholds,

��r+1,r+1,−1��k� = − ��0��kh
�r��

= 2 cos
2�
rp

q
− k� + 	 , �2.11�

is periodic in r with period q.
If kF /� is irrational, the energy of the deep hole thresh-

olds is not periodic in r. This is equivalent to the problem of
irrational rotations on the unit circle.28 In this case, for any k
there are infinitely many nondegenerate thresholds �−r+1,r
+1,−1�, and the energy can be made arbitrarily low by tak-

FIG. 1. Some excitations which define the edges of the support
of the spectral function: �a� excitations with charge +1, which con-
tribute to Ap�k ,��; �b� excitations with charge −1, which contribute
to Ah�k ,�� �see text for notation�.
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ing �r� sufficiently large. In other words, for kF /� irrational,
we can move the momentum of the deep hole arbitrarily
close to the Fermi surface �at �kF� by shifting it by multiples
of 2kF �considering only the cases where the shift takes the
hole to an allowed region, below the Fermi surface�. Figure 3
illustrates the case kF /�=1 /3−� irrational with ��1. Con-
sider, for example, k=� /2. Since kF is not commensurate
with �, the energy of the �3,−1,−1� threshold falls slightly
below the energy of the �0,2 ,−1� threshold. Continuing with
the series, we find that the �6,−4,−1� threshold falls at an
even lower energy than �3,−1,−1�. This series of thresholds
with decreasing energy implies that the support of Ap�k ,��
extends down to zero energy for all k if kF /� is irrational.

The edges of the support of the hole contribution Ah�k ,��
can be discussed in a similar fashion. Some excitations with
charge NR+NL+Nd=−1 are illustrated in Fig. 1�b�. The no-
tation is such that the dispersion relation for the �NL ,NR ,Nd�
excitation as a function of the momentum of the high energy
particle or hole is the continuation of the dispersion of the
�−NR ,−NL ,−Nd� excitation to negative energies. The upper

thresholds of Ah�k ,�� �in the sense of a maximum negative
frequencies above which Ap�k ,�� is zero� are defined by
deep hole excitations labeled �−r ,r ,−1�. The support of
Ah�k ,�� for two cases of rational kF /� is shown in Fig. 2.
Note that unlike the case of parabolic dispersion,11 the single
hole is not always at the edge of a continuum �see, for ex-
ample, the threshold for kF=2� /5 and k�� /5�.

III. EFFECTIVE HAMILTONIAN FOR SINGULARITY
NEAR THE SINGLE-PARTICLE ENERGY

The behavior of the spectral function near the energies of
the single particle or single hole and near the edges of the
support for nonlinear dispersion can be studied using the
methods developed in Refs. 10 and 11. The procedure con-
sists of integrating out high-energy modes of the fermionic
field and introducing subbands which include not only the
standard low-energy modes at �kF, but also the modes
around the momentum of the high-energy particle �or hole�
whose energy defines the threshold. This leads to an effective
model in which the high-energy particle acts as a mobile
impurity coupled to the Luttinger liquid modes.29–31 The
anomalous exponents at the thresholds are associated with
the phase shifts at the Fermi surface due to the creation of the
high-energy particle, in analogy with the x-ray edge singu-
larity in metals.32–34

Here we focus on the power-law singularity around the
single-particle or single-hole energy �=��k�. We take the
continuum limit of the Hamiltonian in Eq. �2.1� and intro-
duce the fermionic field ��x�. In order to study the singular-
ity at the energy of the single particle with momentum k, we
expand

��x� � eikFx�R�x� + e−ikFx�L�x� + eikxd�x� , �3.1�

where �R,L�x� are right and left movers with momentum near
�kF and d�x� is the high-energy mode defined from states
with momentum near k for kF�k��. Starting from Eq.
�2.1�, we linearize the free fermion dispersion ��0��k� about

0 0.2 0.4 0.6 0.8 1
k/π

0

ω

0 0.2 0.4 0.6 0.8 1
k/π

0

ω

(0,2,-1)

(-1,1,1)
ε(k)

(-2,2,1)

(-3,1,1) (-1,-1,1)

(a)

(b)

FIG. 2. Support of the spectral function A�k ,�� for weakly in-
teracting fermions with a cosine dispersion �the support is the
shaded area�, for two values of Fermi momentum: �a� kF=� /5; �b�
kF=2� /5. The positive frequency part corresponds to the particle
contribution Ap�k ,�� and the negative frequency part to the hole
contribution Ah�k ,��. The lines drawn are the dispersion curves for
the excitations with multiple particles and holes at the Fermi points
and a single high-energy particle or hole, labeled as in Fig. 1 �see
also main text�. The thicker solid line indicates the dispersion of the
single particle or single hole, �=��k�. The other solid lines indicate
the edges of the support, where A�k ,�� vanishes.

0.2 0.4 0.6 0.8 1
k/π

0

ω

r = 1, -2, -5

ε(k)

FIG. 3. Thresholds for deep hole type excitations for kF /�
=1 /3−�, ��1. The solid line represents the single-particle disper-
sion. For irrational values of kF /� and any given k, one can con-
struct a series of “thresholds” �−r+1,r+1,−1�, with increasing
number of low-energy particles and holes, 2 �r�, such that the energy
approaches zero. For k=� /2, we have
��0,2,−1�
��3,−1,−1�
��6,−4,−1�
 . . .. The lower edge vanishes for
all k and the support of A�k ,�� covers the entire �k ,�� plane.
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�kF and k. In the continuum limit, the Hamiltonian density
for the hopping term in Eq. �2.1� becomes

H0 = − ivF��R
†�x�R − �L

†�x�L� + d†��0 − iu0�x�d , �3.2�

where vF=2 sin kF is the bare Fermi velocity, �0=��0��k�, and
u0=2 sin k is the bare velocity of the high-energy particle.
Bosonizing right and left movers in the form

�R,L�x� �
1

�2�
e−i�2��R,L�x�, �3.3�

where �R,L are the right- and left-moving components of a
bosonic field and  is a short-distance cutoff, we can write

H0 =
vF

2
���x�R�2 + ��x�L�2� + d†��0 − iu0�x�d . �3.4�

From Eq. �3.1�, we have the expansion of the density opera-
tor

n�x� � n + �R
†�R + �L

†�L + d†d + �ei2kFx�L
†�R + ei�k−kF�x�R

†d

+ ei�k+kF�x�L
†d + h.c.� . �3.5�

Using Eq. �3.5� and being careful about the point splitting of
the fermionic fields, we find the Hamiltonian density for the
interaction term in Eq. �2.1�

Hint �
V sin2 kF

�
��x�R − �x�L�2 −

2V

�
sin kF�cos kd†d

+ i sin kd†�xd� −
4V sin2��k − kF�/2�

�2�
�x�Rd†d

+
4V sin2��k + kF�/2�

�2�
�x�Ld†d , �3.6�

where we have set =1 �following Ref. 3� and omitted irrel-
evant interaction terms and the renormalization of the chemi-
cal potential. Note that the coupling to the d modes explicitly
breaks the parity symmetry of the original Hamiltonian.

Combining Eqs. �3.4� and �3.6�, we obtain

H =
vK

2
��x�̃�2 +

v
2K

��x�̃�2 + d†�� − iu�x�d

+ 
 �̃L − �̃R

2��
�x�̃ +

�̃L + �̃R

2��
�x�̃�d†d , �3.7�

where �̃ and �̃ are defined by

�R,L =
�̃ � �̃

�2
, �3.8�

such that ��̃�x� ,�x�̃�x���= i��x−x��. To first order in V, the
parameters in Eq. �3.7� are

v
vF

�
u

u0
�

�

�0
� 1 +

V

�
sin kF, �3.9�

K � 1 −
V

�
sin kF, �3.10�

�̃R,L � 2V sin2��k � kF�/2� . �3.11�

The parameters v and K are the familiar renormalized veloc-
ity and Luttinger parameter of the Luttinger model.3 The
renormalized energy and velocity of the high-energy particle
are given by � and u, respectively. Rescaling the bosonic
fields by

�̃ = �K�, �̃ = �/�K , �3.12�

and introducing the chiral components of the rescaled field

�R,L =
� � �

�2
, �3.13�

we arrive at the effective Hamiltonian density

H =
v
2

���x�R�2 + ��x�L�2� + d†�� − iu�x�d

+
1

�2�K
��L�x�L − �R�x�R�d†d , �3.14�

where

�R,L = 
1 + K

2
��̃R,L − 
1 − K

2
��̃L,R �3.15�

are the coupling constants between the d particle and the
Fermi-surface modes.

The Hamiltonian of Eq. �3.14� is not restricted to weak
interactions. It can be regarded as exact �up to irrelevant
operators� if all the parameters are taken to be the renormal-
ized ones, to be fixed by a method that is nonperturbative in
V. In fact, the exact v and K are fixed by the low-energy
spectrum and compressibility computed from the BA solu-
tion of Hamiltonian �2.1�.14 In Sec. VI, we will describe how
�, u, and �R,L can also be fixed with the help of the BA
solution so that we end up with a parameter-free effective
theory for the singularities of the spectral function.

We can decouple the d particle from the bosonic fields by
performing a unitary transformation

U = exp	−
i

�2�K
�

−�

+�

dx��R�R + �L�L�d†d� , �3.16�

with the parameters

�R,L�k� =
�R,L�k�

v � u�k�
. �3.17�

For V�1, we have the weak-coupling expressions

�R,L � �
V

2

sin��k � kF�/2�
cos��k � kF�/2�

. �3.18�

In terms of the transformed fields �̄R,L=U�R,LU†, d̄=UdU†,

�x�R,L = �x�̄R,L �
�R,L

�2�K
d̄†d̄ , �3.19�
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d = d̄ exp	−
i

�2�K
��R�̄R + �L�̄L�� , �3.20�

Hamiltonian �3.14� becomes noninteracting �up to irrelevant
operators�,

H =
v
2

���x�̄R�2 + ��x�̄L�2� + d̄†�� − iu�x�d̄ . �3.21�

We are now able to calculate the time-dependent particle
Green’s function

Gp�k,t� = ��k�t��k
†�0�� , �3.22�

using the Hamiltonian of Eq. �3.21�. For t��−1, we can use
the mode expansion of Eq. �3.1� and write

Gp�k,t� � � dx�d�x,t�d†�0,0�� . �3.23�

In terms of the decoupled fields,

Gp�k,t� � � dx�d̄�x,t�d̄†�0,0�� � �e−i�2��R�̄R�x,t�ei�2��R�̄R�0,0��

� �e−i�2��L�̄L�x,t�ei�2��L�̄L�0,0�� , �3.24�

where

�R,L�k� =
1

K

�R,L�k�

2�
�2

�3.25�

are the anomalous exponents. The ground state of Hamil-

tonian �3.21� has Nd=0 high-energy particles, and a single d̄
particle is created in the transition. The free propagator for
the d particle is

Gp
�0��x,t� = �d̄�x,t�d̄†�0,0�� = e−i�t��x − ut� . �3.26�

The correlation functions of free bosonic fields can be calcu-
lated by standard methods.3 We find

Gp�k,t� � e−i�t	 i

�u − v�t + i
��R	 − i

�u + v�t − i
��L

.

�3.27�

The long-time asymptotic behavior of the particle Green’s
function is then given by

Gp�k,t� �
exp�− i�t − i

�

2
��L − sign�u − v��R��

t�
,

�3.28�

where

��k� = �R�k� + �L�k� . �3.29�

Taking the Fourier transform of Eq. �3.27�, we obtain the
particle contribution to the spectral function

Ap�k,�� = �
−�

+�

dtei�tGp�k,t� . �3.30�

The result depends on the sign of u−v. For u
v,

Ap�k,�� �
��� − ��sin���L� + ��� − ��sin���R�

�� − ��1−� .

�3.31�

For u�v,

Ap�k,�� �
��� − ��sin����

�� − ��1−� . �3.32�

Therefore, the effective model predicts that Ap�k ,�� diverges
on both sides of the single-particle energy �=� if u
v, but
only from above if u�v. In the continuum model,11 the ve-
locity increases monotonically with k so one always has u

v. In the lattice model, the velocity vanishes as k ap-
proaches the zone boundaries. In the noninteracting limit, we
have u�v for �−kF�k��. Note that the result in Eq.
�3.32� does not imply that Ap�k ,�� vanishes below the
single-particle energy if u�v. As we discussed in Sec. II, the
support of the spectral function always extends below the
single-particle energy for kF�� /2. However, a singular be-
havior below the single-particle energy only appears if the
single-particle excitation is unstable �i.e., the energy is low-
ered� against the emission of a low-energy particle-hole pair
at the Fermi surface.10 This is the case of a “fast particle”
with u
v. For a “slow particle” with u�v, decay processes
with a finite-momentum transfer can still lower the energy of
the single-particle excitation. Both finite-momentum transfer
and three-body-collision-type processes can smooth out the
singularity on the single-particle energy at the scale of a
decay rate 1 /�. We shall return to this point in Sec. V.

Similar results can be derived for the hole Green’s func-
tion

Gh�k,t� = ��k
†�t��k�0�� �3.33�

by employing a Hamiltonian analogous to Eq. �3.14� and
interpreting d as the operator that annihilates a hole with
momentum k�kF. We find

Gh�k,t� =

exp�− i�t − i
�

2
��L + sign�v − u��R��

t�
,

�3.34�

where �
0 and u
0 are the renormalized energy and ve-
locity of the hole and �R,L are the corresponding exponents as
given by Eq. �3.25�. Typically, we expect u�v for a hole
below kF�� /2, but it is possible that the effective mass
around the Fermi points changes sign in the strongly inter-
acting regime.35 For u�v, we find

Ah�k,− �� �
��� − ��sin����R + �L��

�� − ��1−� . �3.35�

The singularity exponents at the edges of the support de-
fined by excitations with multiple particles and holes �e.g.,
�2,0 ,−1� in Fig. 2� can also be calculated using x-ray-edge-
type effective models as done in Refs. 11 and 12. In the
continuum model, these singularities are always convergent
due to phase-space constraints. In this paper we are only
interested in divergent singularities, which are the most ap-
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parent feature of the spectral function and govern the long-
time behavior of the fermion Green’s function. Divergent
singularities are also the easiest to investigate with numerical
methods. As we shall discuss in Sec. IV, besides the single-
particle singularity, additional divergent singularities can
arise in the lattice model from two-particle one-hole states in
which the two particles form a bound state.

IV. DIVERGENT SINGULARITIES FROM BOUND STATES

The nonmonotonic momentum dependence of the velocity
in the lattice model affects the nature of the upper thresholds
of multiparticle continua. When an upper threshold is defined
by excitations which propagate with the same velocity, the
interaction between the high-energy particles and holes can
lead to the formation of bound states and strongly affect the
line shape of th spectral function.15 In this section, we exam-
ine the possibility that a two-particle one-hole state can give
rise to a divergent power-law singularity in the single-
particle spectral function when two particles with negative
mass bind for V
0.

The existence of bound states above the two-particle con-
tinuum can be demonstrated directly by solving the two-
body problem in the lattice. This is a trivial limit of the BA
equations for the eigenstates of Eq. �2.1� for N=2 particles.20

Consider the spinless fermion model �dropping the chemical-
potential terms�

H = − �
j

�� j
†� j+1 + h.c.� + V�

j

njnj+1. �4.1�

Consider two-particle eigenstates

��� = �
i,j
�i,j�i

†� j
†�0� , �4.2�

where we may assume �i,j =−� j,i. The wave function must
obey the lattice Schrödinger equation

− �i+1,j − �i−1,j − �i,j+1 − �i,j−1 = E�i,j,��i − j� 
 1� ,

�i+2,i − �i+1,i−1 = �E − V��i+1,i, �4.3�

where E is the energy eigenvalue. We may separate the
center-of-mass and relative coordinates

� j,l = eiP�j+l�/2f�j − l� . �4.4�

Note that the momentum of this state is P. The Schrödinger
equation becomes

f�r + 1� + f�r − 1� = −
E

2 cos�P/2�
f�r� ,

f�2� = −
E − V

2 cos�P/2�
f�1� . �4.5�

The most general solution of the first equation is �for r
0�

f�r� = e−Qr, �4.6�

where Q must be either pure real or pure imaginary in order
for E to be real. The case of real positive Q corresponds to a
bound state. Q is given by

cosh Q = −
E

4 cos�P/2�
. �4.7�

The second of Eqs. �4.5� determines Q and E

eQ = −
V

2 cos�P/2�
. �4.8�

Thus we see that for V
0, a bound state only exists for a
range of wave vector P, where cos�P /2��0. Requiring Q

0, we see that

− cos�P/2� � V/2. �4.9�

For small positive V, P /2=� �� /2+�� with small positive
�. Thus the momentum of this state is P���2�. The al-
lowed range of momentum is

sin � � V/2. �4.10�

The dispersion relation of this two-particle bound state is

E�P� = V +
2

V
+

2

V
cos P , �4.11�

with the minimum, E=V, at momentum P=�. Note that the
effective hopping amplitude is teff=2 /V
1; therefore the re-
pulsively bound state is lighter than the free particles. The
two-particle continuum in the range of Eq. �4.10� extends
over

− 4 sin � � E� 4 sin � . �4.12�

Since 4 sin ��V+ �4 /V�sin2 �, the energy of the bound state
is above the continuum. In this sense, it is an antibound state
�see Fig. 4�a��.

The BA solution shows that two-particle bound states also
exist in the case of finite fermion density.20 We are interested
in excitations in which a two-particle bound state is added to
the ground state of the system with N particles. The momen-
tum range and dispersion relation for this type of excitation
can be calculated exactly in the thermodynamic limit, as we

0 0.5 1 1.5 2
P/π

-4

-2

0

2

4

ω

2p continuum 2p continuum

bound state (b)(a)

FIG. 4. �Color online� �a� Two-particle continuum and bound-
state band for the two-body problem on the lattice. �b� The upper
threshold of the two-particle continuum is defined by two particles
with approximately the same momentum and negative effective
mass.
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will discuss in Sec. VI. In the remainder of this section, we
work out the effective-field theory for the singularities in-
volving two-particle bound states.

We first look more closely at the nature of the upper
threshold of the two-particle continuum discussed above. In
general, one could define two subbands with momenta
around k1 and k2, with k1+k2= P mod 2�, and expand the
dispersion relations within each subband in the form

�i��ki� � �i + ui�ki +
��ki�2

2mi
, �4.13�

for i=1,2. The energy of a particle pair with total momen-
tum P is

E��k� = �1��k� + �2�− �k� . �4.14�

Imposing that E��k� is maximum at �k=0 implies u1=u2.
That this is a maximum follows from the condition m1=m2
�0. This means that for any dispersion relation with a single
inflection point above the Fermi level, the upper threshold of
the two-particle continuum for kF�P�� has the two par-
ticles in the same subband with negative effective mass. The
wave vectors of the particles at the upper threshold are k1
=k2= P /2−� for kF�P�� /2, or k1=k2= P /2 for � /2�P
�� �see Fig. 4�b��.

Some intuition about the formation of antibound states
can be gained by considering the case Q�1 so that the
bound-state wave function decays slowly and a continuum
limit is possible. The Fourier transform of the bound-state
wave function goes as

f�q� �
Q

q2 + Q2 . �4.15�

The bound-state wave function involves relative momenta of
order Q or smaller. Thus it is valid to expand the dispersion
relation near wave vector k when Q is small. We assume to
be in this regime and discuss as example the case k1�k2
� P /2
� /2. We introduce a high-energy field d�x�

��x� � eiPx/2d�x� , �4.16�

and expand the dispersion in the form ��P /2+ p���+up
+ p2 /2m for p� �P� /2. In contrast with the single-particle
threshold, we now restrict to the subspace of double occu-
pancy of the d subband,

Nd =� dx�d†�x�d�x�� = 2. �4.17�

It is then important to include in our model the self-
interaction of the d field. Neglecting for the moment the
interaction with the Fermi-surface modes in the case of finite
density, we can write down the effective Hamiltonian density

Hpair = d†
� − iu�x −
�x

2

2m
�d + Vd†�xd�xd

†d . �4.18�

In the weak-coupling limit, we have V�V and

1

m
� 
1 +

V

�
sin kF�cos

P

2
� 0. �4.19�

Notice that the interaction between the d particles cannot be
described by a delta function potential. This is because for
spinless fermions s-wave scattering vanishes identically and
the leading process is p-wave scattering. In order to obtain a
two-particle bound state, we must treat the irrelevant inter-
action term.

Consider the behavior of the pair spectral function

�pair�P,�� =� dxe−iPx�
−�

+�

dtei�t�pair�x,t� , �4.20�

�pair�x,t� = �d�xd�x,t��xd
†d†�0,0�� , �4.21�

near the upper threshold of the two-particle continuum. For
V=0, the pair spectral function vanishes at the upper thresh-
old of the two-particle continuum as �pair�P ,�����2�
−���2�−�. For V
0, low-energy scattering between two
particles with negative mass can give rise to a bound state
above this upper threshold. The wave function for the two
fermionic particles can be factorized as ��x1 ,x2�
�eiPXcmf�r�, where Xcm= �x1+x2� /2 is the coordinate of the
center of mass and f�r� is the antisymmetric wave function
for the relative coordinate r=x1−x2. This wave function is
found by solving the Schrödinger equation


E −
p2

m
� f�p� =� dq

2�
V�q�f�p − q� , �4.22�

where V�q� is the Fourier transform of the nearest-neighbor
interaction potential �in some approximation with a momen-
tum cutoff�.

In one dimension, Eq. �4.22� with m�0 always gives a
normalizable solution with E
0 for arbitrarily weak repul-
sive interaction. However, the wave function of the lowest
bound state is an even function of the relative coordinate. A
second bound state with an antisymmetric wave function can
exist for a potential well with finite width and depth if either
the interaction is sufficiently strong or the particles are suf-
ficiently heavy. According to Eq. �4.19�, the effective mass
of the d subband is a function of the center-of-mass momen-
tum P and diverges as P→�. This corresponds to the mo-
menta of the two particles approaching the inflection point of
the dispersion �Fig. 4�b��. Therefore, for small V
0, a two-
particle bound state with a properly antisymmetric wave
function will form when the two particles have total center-
of-mass momentum P��. Furthermore, the binding energy
is maximum at P=�. A bound-state dispersion Ebs�P� can be
defined for

�P − �� ��bs, �4.23�

where �bs�O�V� is the half-bandwidth of the bound-state
band. For the integrable model, the exact value of �bs can be
obtained from the BA equations �see Sec. VI B�.

The contribution of a bound state to the pair-correlation
function can be written as
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�pair�x,t� � �df

dr
�0��2

�
P

e−iPx−iEbs�P�t. �4.24�

In analogy with the definition of d subbands for the single-
particle dispersion, we take the continuum limit in the
bound-state dispersion and introduce a subband with mo-
mentum P� P0, with �P0−����bs. We expand

P � P0 + p, E�P� � �bs + ubsp + p2/2mbs, �4.25�

where �bs=E�P0� and ubs and mbs are the effective bound-
state velocity and mass around momentum P0. Since the
bound-state dispersion has a minimum at P=�, we have
mbs
0. The propagator for a high-energy bound state is

�pair�x,t� � �df

dr
�0��2

e−i�bst��x − ubst� . �4.26�

We now turn to the calculation of the contribution of the
two-bound-particle one-hole state to the single-particle
Green’s function for kF�k��. As explained in Ref. 11, the
Schrieffer-Wolff transformation that eliminates from the
Hamiltonian off-diagonal scattering processes �those which
take particles out of their subbands� generates higher-order
contributions to the fermionic field. For instance, the leading
contribution to Gp�k , t� due to a state with two particles in
the same high-energy subband and one hole at the right
Fermi point is given by

Gp�k,t� =� dxe−ikx���x,t��†�0,0�� , �4.27�

with

�†�x� � e−ikxd†�x��xd
†�x��R�x� . �4.28�

The amplitude on the right-hand side �rhs� of Eq. �4.28� is
O�V�. The idea now is that if the total wave vector k is in the
range where the two high-energy particles can bind, the two
d† operators in Eq. �4.28� can be replaced by a single opera-
tor corresponding to the creation of a bound state. We as-
sume this to be valid both when Q is small and when Q is
O�1� �tightly bound pair�.

The minimum momentum kb for which a bound-state con-
tribution to Gp�k , t� exists is obtained by having the bound
state with the lowest allowed momentum P0=�−�bs and the
hole with the maximum allowed momentum kF,

kb = � − �bs − kF. �4.29�

For k
kb, there is a continuum of states defined by a single
pair and a single hole. For the integrable model, the energy
of an excited state with total momentum k can be written as

E = E�P0� − ��P0 − k� , �4.30�

where E�P0� and ��P0−k� are the renormalized energies of
the bound state and hole, respectively.

The lower threshold of the one-bound-state one-hole con-
tinuum is determined by minimizing Eq. �4.30� with respect
to P0 for �P0−����bs and �P0−k��kF. There are three pos-
sibilities.

�a� First, for ubs�k+kF��v, the lower threshold is given
by a hole at kF and a bound state with momentum P0=k

+kF. In this case, we consider the correlation function for the
operator in Eq. �4.28�. We define the pair creation operator

B†�x� =
1
�2
� drf�r�d†
x +

r

2
�d†
x −

r

2
� . �4.31�

The B† field is bosonic �it creates a p-wave “molecule”�. We
project the fermionic field into the subspace of a single
bound state

�†�x� � e−ikxB†�x��R�x� . �4.32�

We can now write down an effective Hamiltonian which phe-
nomenologically describes the coupling of the bound state to
the low-energy modes,

H2 = B†��bs − iubs�x�B +
v
2

���x�R�2 + ��x�L�2�

+
1

�2�K
��L

bs�x�L − �R
bs�x�R�B†B . �4.33�

For the integrable model, all the coupling constants can be
extracted from the BA as discussed in Sec. VI B. The inter-
action in Eq. �4.33� can be diagonalized by the unitary trans-
formation of Eq. �3.16� with the appropriate parameters

�R,L
bs =

�R,L
bs

v � ubs
. �4.34�

The contribution to the particle Green’s function becomes

Gp�k,t� � � dx
�pair�x,t�

�x − vt + i��R��x + vt − i��L�
, �4.35�

where

�R,L� �k� =
1

4K

1 −

�R,L
bs

�
� K�2

, �4.36�

and �pair�x , t� is the bound-state part of the pair-correlation
function given in Eq. �4.26�. As a result, in the case ubs�P0
=k+kF��v, the contribution to Gp�k , t� is given by

Gp�k,t� � e−i�bst�t − i�−�R�−�L� . �4.37�

Since �R
bs
0 for V
0, one can verify in the weak-coupling

limit that �R� +�L��1 and 1−�R� −�L��O�V�. As Gp�k , t� de-
cays with an exponent smaller than 1, the spectral function
acquires a divergent edge singularity

Ap�k,t� � ��� − �bs��� − �bs��R�+�L�−1. �4.38�

This divergence in the spectral function can be interpreted as
an x-ray edge singularity due to the repulsive interaction
between the bound state and the particles at the Fermi sur-
face.

If V is small, the bound-state band is narrow and we ex-
pect ubs�P0��v for all �−�bs�P0��+�bs. In this case,
the singularity in Eq. �4.38� is present for all �−�bs−kF
�k��+�bs−kF.

�b� The second possibility when minimizing Eq. �4.30� is
that for ubs��+�bs��v and k
�+�bs−kF, it is still possible
to create one-bound-state one-hole excitations by creating
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the hole at a state with momentum kh= P0−k�kF. In this
case, the lower threshold of the continuum has three high-
energy particles. For small values of kF−kh, the lower thresh-
old is defined by a bound state with the maximum momen-
tum P0=�+�bs and a deep hole with momentum kh=�
+�bs−k, such that the velocity of the deep hole is uh�kh�

ubs��+�bs�.

As we keep increasing k and decreasing kh, there will be a
value of hole momentum kh

� at which the hole velocity uh�kh
��

equals the maximum bound-state velocity ubs�P0=�+�bs�.
For k
�+�bs−kh

�, minimizing Eq. �4.30� gives a lower
threshold defined by a bound state and a deep hole with
equal velocities: uh�P0−k�=ubs�P0��v.

The behavior of the particle Green’s function near the
lower threshold with a bound state and a deep hole can be
calculated using

�†�x� � e−ikxB†�x�dh
†�x� , �4.39�

where dh
†�x� creates a hole. The operators in Eq. �4.39� must

be defined after solving the three-body problem in which the
two particles effectively attract each other �due to the nega-
tive mass� and repel the extra hole. We assume that this has
been done and the resulting spectrum of the one-bound-state
one-free-particle-type excitations has been parametrized as in
Eq. �4.30�, with no residual interactions between the high-
energy modes. The coupling of these high-energy particles to
the low-energy modes can be described by the effective
Hamiltonian density

H3 = B†
�bs − iubs�x −
�x

2

2mbs
�B + dh

†
�h − iuh�x −
�x

2

2mh
�dh

+
1

�2�K
��L

bs�x�L − �R
bs�x�R�B†B

+
1

�2�K
��L

h�x�L − �R
h�x�R�dh

†dh. �4.40�

The particle Green’s function derived from Eqs. �4.39� and
�4.40� is

Gp�k,t� � � dx
�pair�x,t�Gh

�0��x,t�

�x − vt + i��R��x + vt − i��L�
, �4.41�

where Gh
�0��x , t� is the propagator of the free deep hole and

�R,L� �O�V2� are given by Eq. �3.25� with the total phase
shifts �R,L=�R,L

bs +�R,L
h due to the bound state as well as the

deep hole.
One can verify that as long as the velocity of the deep

hole is larger than the velocity of the bound state, Eq. �4.41�
does not lead to a divergence at the lower threshold of the
one-bound-state one-deep-hole continuum. Therefore, for
ubs��+�bs��v there is no divergent singularity in the wave-
vector range �+�bs−kF�k��+�bs−kh

�.
For k
�+�bs−kh

�, we must set uh=ubs in Eq. �4.40�. In
this case, replacing both the hole and bound-state propaga-
tors by delta functions with the same argument as in Eqs.
�3.26� and �4.26� would lead to a divergence. We must in-
stead calculate these propagators by keeping the quadratic
term in each dispersion relation. This gives

�pair�x,t� � e−i�bst� mbs

2�it
eimbs�x − ubst�

2/2t, �4.42�

Gh�x,t� � e−i�ht� mh

2�it
eimh�x − ubst�

2/2t. �4.43�

The integral in Eq. �4.41� is then dominated by the region
x�ubst. In the limit of large t, we obtain

Gp�k,t� �� mbsmh

2�it�mbs + mh�
e−i��bs+�h�t

�t − i��R�+�L�
. �4.44�

This leads to a divergence in the spectral function

Ap�k,�� � ��� − �bs − �h��� − �bs − �h�−�1/2�+�R�+�L� .

�4.45�

In the weak-coupling limit, this is essentially the divergence
of the joint density of states of the two-particle bound state
and hole with the same velocity.

In summary, in the case ubs��+�bs��v, the divergent
edge singularity due to a two-particle bound state is absent
for �+�bs−kF�k��−�bs−kh

� but resurges for �−�bs−kh
�

�k�� as a stronger singularity, with exponent close to
−1 /2 for V�1.

�c� Finally, the third possibility, when minimizing Eq.
�4.30�, is that ubs�P0�
v for allowed values of P0��+�bs.
This condition is more likely to be observed at lower densi-
ties �smaller v� and stronger interactions �larger �bs�. In this
case, a divergent edge singularity exists for all k
kb. The
nature of the lower threshold changes at k= P0

�−kF, where P0
�

is such that ubs�P0
��=v. For �−�bs−kF�k�P0

�−kF, the
lower threshold is defined by a hole at kF and a bound state
with momentum k+kF. The corresponding singularity is the
weaker one given by Eq. �4.38�. For P0

�−kF�k��, the
lower threshold is defined by a bound state and a deep hole
with the same velocity. The edge singularity in this case is
described by Eq. �4.45�.

V. INTEGRABILITY AND POWER-LAW SINGULARITIES

A. Broadening of the single-particle peak for u
v

The result in Sec. III predicts that the single-particle spec-
tral function exhibits a divergent power-law singularity at the
energy of the single-particle excitation. The reason for the
exact power-law decay of the particle Green’s function can
be traced back to the ballistic propagation of the high-energy
particle, as expressed by the free propagator in Eq. �3.26�. If
the propagation of the d particle is made diffusive, in the
sense of a nonzero decay rate 1 /� in the particle Green’s
function, the divergent singularities in the spectral functions
are replaced by rounded Lorentzian-like peaks. In real time,
the Green’s function decays exponentially as Gp�k , t��e−t/�

at large t.11

The purpose of this section is to argue that a nonzero
decay rate 1 /� in the regime u
v �“fast particle”� can be
recovered within the effective-field theory approach by add-
ing to Eq. �3.21� the following irrelevant interaction term
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which couples the d̄ particle to the bosonic fields:

�H = gd̄†d̄�x�̄R�x�̄L, �5.1�

where g is the coupling constant. In the original fermion
representation, this corresponds to a six-fermion interaction

term: d̄†d̄�R
†�R�L

†�L. It leads to a three-body scattering pro-
cess where the high-energy d particle scatters simultaneously
off two particles slightly below the Fermi energy �one near
the left branch and one near the right branch�, producing a
final state with the momentum of the d particle slightly
shifted and two particles produced slightly above the Fermi
energy �one near the left branch and one near the right
branch�. The same interaction was considered in Ref. 29,
where it was shown to give rise to the finite scattering rate of
a mobile impurity coupled to a Luttinger liquid. This type of
interaction is allowed by symmetry and is generated by
bosonization of the interaction term in Eq. �2.1� to second
order in V. It is also generated by the unitary transformation
that eliminates the marginal coupling between d and the
bosonic fields. However, since g is O�V2�, the correct g can-
not be fixed in the weak-coupling limit by simple bosoniza-
tion.

Let us assume that g is present in the effective Hamil-
tonian and look at the consequences. Consider the effective
Hamiltonian for a single high-energy particle with momen-
tum near k. From Eq. �3.21�, the time-ordered free propaga-
tor for the d particle is

G�0��x,t� = �Td̄�x,t�d̄†�0,0�� = ��t�e−i�t��x − ut� . �5.2�

The Fourier transform is

G�0��p,�� = �� − � − up + i�−1, �5.3�

where �p��−1�k−kF is the momentum within the sub-
band. We apply perturbation theory in the g interaction. The
Dyson equation for the d propagator gives the dressed propa-
gator

G�p,�� = �� − � − up − ��p,���−1, �5.4�

where ��p ,�� is the self-energy. To second order in the cou-
pling constant, we have

��p,�� = − ig2�
−�

�

dxe−ipx�
−�

�

dtei�tDR
�0��x,t�

� DL
�0��x,t�G�0��x,t� , �5.5�

where

DR,L
�0� �x,t�  ��x�̄R,L�x,t��x�̄R,L�0,0��0 = −

1

2��vt − i � x�2 .

�5.6�

The imaginary part of the self-energy reads

Im ��p,�� = − 
 g

2�
�2�

−�

�

dt

�
ei��−�−up�t

��u − v�t + i�2��u + v�t − i�2 . �5.7�

We can see that if the velocity of the high-energy particle is
larger than the Fermi velocity, the integrand in Eq. �5.7� has
poles both below and above the real axis and Im � is non-
zero. This is precisely the condition for the existence of the
two-sided singularity at the single-particle energy. In con-
trast, if d is a deep hole or a high-energy particle with u
�v, Im � vanishes identically. Note also that interaction

processes such as d̄†d̄��x�̄R�2 or d̄†d̄��x�̄L�2, in which the d̄
particle scatters only right movers or only left movers, do not
contribute to the imaginary part of the self-energy.

Assuming u
v, the decay rate for the high-energy par-
ticle with momentum near k is

1

�
= − Im ��p,� = � + up� =

g2�u2 − v2�
��2u�3 , �5.8�

where  is the short-distance cutoff of the bosonic fields.
Therefore, this approach yields a cutoff-dependent yet non-
zero decay rate. It is instructive to consider the scaling of the
decay rate in the low-energy limit k→kF. In this limit, we
have

u − v � �k − kF�/m . �5.9�

Moreover, the cutoff must scale with the separation between
the low and high-energy subbands; therefore

−1 � C�k − kF� , �5.10�

where C�1 is a constant. Equation �5.8� then simplifies to

1

�
�

Cg2�k − kF�4

�m�2v�2 . �5.11�

Finally, in the weak-coupling limit g must be regarded as the
amplitude for a decay process in which the high-energy par-
ticle scatters one right mover and one left mover. In terms of
the original fermions, the operator in Eq. �5.1� couples a
single-particle state to a state with three particles and two
holes

��� = �k1

† �k2

† �k3

† �k4
�k5

�0� . �5.12�

For a generic two-body interaction potential, g�����k
†�0�

must be O�V2� and must vanish in the limit k→kF �no
s-wave scattering for spinless fermions�. Furthermore, the
coupling constant g has dimensions of 1 /m. The combination
of parameters that satisfies these conditions is the one de-
rived in Ref. 11 by perturbation theory

g �
V0�V0 − Vk−kF

�

mv2 . �5.13�

Expanding Vq�V0+V0�q
2 /2 for a short-range interaction and

substituting this form into Eq. �5.11�, we find

SPECTRAL FUNCTION OF SPINLESS FERMIONS ON A… PHYSICAL REVIEW B 79, 165113 �2009�

165113-11



1

�
�

�V0V0��
2�k − kF�8

�m3v6 . �5.14�

Equation �5.14� recovers the interaction and momentum
dependence of the decay rate found in Ref. 11 for small V
and k�kF. In this limit, the decay rate is extremely small.
However, based on the result of Eq. �5.8�, we expect that the
decay rate for V and k−kF of order 1 can be fairly large in a
generic model. This would imply that at high energies �but
still in the regime u
v� and for strong interaction, the par-
ticle spectral function for a generic �nonintegrable� 1D
model exhibits a broad peak near the single-particle energy,
not much different from the higher-dimensional counterpart.

However, for an integrable model, it is possible �and per-
haps probable� that g vanishes identically since it is related
to the amplitude of a three-body collision in the sense dis-
cussed below Eq. �5.1�. Thus we conjecture that the irrel-
evant operator in Eq. �5.1� is absent in the effective Hamil-
tonian for an integrable model. In fact, the exact vanishing of
the decay rate to all orders in V and k−kF requires the ab-
sence of infinitely many more irrelevant interaction terms,

which couple the d̄ particle to the bosonic fields and involve
higher powers of �x�̄R,L. This is only possible by fine tuning
of the coupling constants. That integrability poses nontrivial
constraints on the coupling constants of some irrelevant op-
erators has been demonstrated rigorously in Ref. 35. Here we
shall justify our conjecture in Sec. VII by examining the
numerical tDMRG results for the particle Green’s function of
integrable model �2.1�.

B. Broadening of the single-particle peak for u�v

In the “slow particle” regime, where the velocity of the
high-energy particle is smaller than the Fermi velocity, the
three-body-collision-type interaction discussed in Sec. V B
yields zero decay rate. This regime does not occur in the
continuum model.11 The motivation to consider three-body-
collision-type processes for u
v was that in the continuum
model the decay rate vanishes at second order in the interac-
tion, making it necessary to go to O�V4�. In this section we
point out that in the lattice model the decay rate for a single-
particle excitation with u�v is nonzero at O�V2�. This is due
a two-body collision process in which the slow particle scat-
ters off one particle deep below the Fermi surface and both
final particles are, in general, at high-energy states above the
Fermi surface. Therefore, the broadening of the single-
particle peak for u�v does not require three-body collisions
and is present even in the integrable model.

We calculate the decay rate in the limit V�1 by straight-
forward perturbation theory in the interaction. We write the
Hamiltonian in the form H=H0+Hint, where H0 is given by
Eq. �2.7� and

Hint =
1

2L
�

k1,k2,q
V�q��k1

† �k1+q�k2

† �k2−q. �5.15�

It follows from Fermi’s golden rule that the imaginary part of
the self-energy to O�V2� is

Im ��2��k,�� = −
�

2 �
p,q�0

�V�q� − V�k − p − q��2 � ���k−q
�0� �

���− �p
�0�����p+q

�0� ���� − �k−q
�0� − �p+q

�0� + �p
�0�� .

�5.16�

In contrast with Eq. �5.12�, the final state ��� considered in
Eq. �5.16� has only two particles above the Fermi level �in
general both of them at high energies� and the amplitude
����k

†�0� is O�V�. If the dispersion is parabolic, Im ��2� van-
ishes at the single-particle energy due to phase-space con-
straints. However, if the dispersion has an inflection point, it
is possible to satisfy both momentum and energy conserva-
tion such that the decay rate is nonzero. In order to calculate
1 /� to O�V2�, we can use the noninteracting dispersion �k

�0�

=−2 cos k−	. Thus the “on-shell” condition

�k
�0� + �p

�0� − �k−q
�0� − �p+q

�0� = 0 �5.17�

is satisfied for

p = � − k, k + kF − �� q � k − kF. �5.18�

This decay process is only kinematically allowed for k
�
−kF, the momentum range where u
v in the weak-coupling
limit. It involves a finite-momentum scattering process in
which the high-energy particle decays as a hole is created in
the state with momentum �−k and another high-energy par-
ticle is created above the Fermi surface �see Fig. 5�. There is
a continuum of two-particle one-hole excitations, corre-
sponding to different choices of q, which are degenerate with
the single-particle excitation. Importantly, the allowed range
of q shrinks to zero in the limit kF→� /2 and the decay rate
vanishes at half-filling.

Substituting V�q�=2V cos q for the nearest-neighbor in-
teraction potential in Eq. �5.16�, we find the decay rate

1

�
= 2V2 cos2 k�

kF

�−kF

dk1
cos2 k1

sin k1 − sin k
. �5.19�

The explicit result is cumbersome, but the behavior of 1 /� as
a function of k is illustrated in Fig. 6 for kF=� /5. There is a
logarithmic divergence at k→�−kF. This is an artifact of
stopping at second order in perturbation theory. The decay
process for k→�−kF involves the creation of a hole at the
Fermi point with momentum kF. We expect that at higher
orders in V the density of states at the Fermi surface should
acquire a power-law suppression due to Luttinger liquid
physics. As a result, 1 /� should vanish as k approaches the
lower threshold. A similar discontinuity in the decay rate

k3 = π − k

k2

k1

k

FIG. 5. Finite-momentum decay process which gives a finite
decay rate for the high-energy particle with u�v.
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which is removed by treating interactions in the final state
has been discussed in the context of magnons in the Haldane
chain in a magnetic field.36

The kinematic boundary for this decay process can be
generalized for finite interaction strength V. Assuming that
the renormalized dispersion has a single inflection point
above kF, the minimum value of k for which 1 /�
0 is ob-
tained from the condition that Eq. �5.17� be satisfied for the
hole at the Fermi point with momentum kF,

�k − �k−q − �kF+q = 0. �5.20�

Imposing that Eq. �5.20� is satisfied for q→0 leads to the
condition u=v. We conclude that the decay rate is nonzero
and the spectral function has a broadened single-particle
peak for momentum k in the regime u�v. The precise mo-
mentum and interaction dependence of the decay rate in this
regime is an open question.

In real time, the corresponding contribution to the particle
Green’s function decays exponentially at large t,11

Gp�k,t� �
exp�− i�t − i��/2 − t/��

t�
. �5.21�

VI. EXACT ENERGIES AND EXPONENTS FROM THE
BETHE ANSATZ

In order to fix the parameters of the effective model in Eq.
�3.14�, we need a BA calculation of a physical quantity
which depends on the coupling constants �R,L or, equiva-
lently, �R,L. First, let us show that the field theory approach
predicts that the finite-size spectrum for low-energy excita-
tions in the presence of a high-energy particle depends on
these coupling constants. Following Ref. 37, we can show
that the finite-size spectrum for the Luttinger model �without
the high-energy particle� with periodic boundary conditions
is

�E =
2�v

L

�N2

4K
+ KD2 + n+ + n−� , �6.1�

where �N is integer, D is integer �half-integer� for N even
�odd�, and n� are integers. �N measures the number of low-
energy charge excitations. We have

�N = �
0

L

dx��R
†�R + �L

†�L� =� K

2�
�

0

L

dx��x�L − �x�R� .

�6.2�

Changing the total number of particles changes the boundary
conditions of the bosonic field in a finite-size system.37 Like-
wise, D is the number of low-energy current excitations, in
which particles are transferred between the two Fermi points.
Hence

D =
1

2
�

0

L

dx��R
†�R − �L

†�L� = −
1

�8�K
�

0

L

dx��x�L + �x�R� .

�6.3�

In the presence of a single d particle ��d†d�=1 /L�, the uni-
tary transformation of Eqs. �3.16� and �3.19� takes

�N → �N −
�R + �L

2�
, �6.4�

D → D −
�R − �L

4�K
. �6.5�

The spectrum of the low-energy particle-hole excitations
about the Fermi points �n� terms in Eq. �6.1�� is not modified
by the creation of the high-energy particle. We conclude that
the finite-size spectrum in the presence of the d particle �in-
cluding the term of O�1� from Eq. �3.21�� must assume the
form

�E = � +
2�v

L
	 1

4K

�N −

�R + �L

2�
�2

+ K
D −
�R − �L

4�K
�2

+ n+ + n−� . �6.6�

This is the spectrum of a shifted c=1 conformal field
theory.31 The parameters �R,L, which determine the expo-
nents in Eq. �3.25�, can be interpreted as renormalized phase
shifts at the Fermi points due to the creation of the d particle.

We now proceed to calculate the finite-size spectrum in
the BA, following Woynarovich.13 We should first point out
that there is no correspondence between the fermions of the
effective-field theory and the quasiparticles of BA eigen-
states. However, we can reasonably expect that the power-
law singularities of the spectral function, if existing, will
develop at the energy thresholds of the exact spectrum. We
can focus on a particular �in practice, the simplest possible�
class of eigenstates, compute its finite-size spectrum, and
compare it with the expression in Eq. �6.6�. This procedure
does not require assumptions about the form factors of states
that contribute to the spectral function as written in Eqs.
�2.5� and �2.6�.

A. Single-particle excitations

We start from the Bethe equations for the eigenstates of
the Hamiltonian in Eq. �2.1� with N�L /2 fermions,14

0.8 0.85 0.9 0.95 1
k/π

0

5

10

15

1/
τV

2

FIG. 6. Second-order result for the decay rate of the high-energy
particle in the wave vector range k
�−kF, for kF=� /5.
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Lp0� j� = 2�Ij + �
k=1

N

�� j −  k� . �6.7�

The quantum numbers Ij are half-integers for N even and
integers for N odd. The functions p0� � and �� � are, respec-
tively, the quasimomentum and two-particle scattering phase
shift as a function of rapidity  ,

p0� � = i log	 sinh�i!/2 +  �
sinh�i!/2 −  �� , �6.8�

�� � = i log	 sinh�i! +  �
sinh�i! −  �� , �6.9�

where !=arccos�V /2�. A given eigenstate is characterized by
a set of rapidities � j� and the corresponding energy is

E = �
j=1

N

�0� j� , �6.10�

where

�0� � = −
2 sin2 !

cosh�2 � − cos !
− 	 �6.11�

is the bare energy of a particle with rapidity  .
Consider a state defined by taking �Ij� to be the set of all

integers �or half-integers� between I+ and I−, which are de-
fined by

I+ = max�Ij� +
1

2
, �6.12�

I− = min�Ij� −
1

2
. �6.13�

This is a state with no low-energy particle-hole pairs �n�
=0�. The total number of particles is

N = IN − I1 + 1 = I+ − I−. �6.14�

The current carried by an eigenstate is given by the differ-
ence between the number of right and left movers. It can be
written as

2D = I1 + IN = I+ + I−. �6.15�

The ground state for N particles corresponds to the choice
I+=−I−=N /2, with all rapidities  j in Eq. �6.7� real. To cre-
ate a single-hole excitation we remove a quantum number Ih,
�Ih��N /2, from the set of Ij’s. A single-particle excitation is
created by adding one quantum number Ip with �Ip�
N /2.
We distinguish between single-particle excitations with real
and complex rapidities. It follows from Eq. �6.7� that for real
rapidities � j���, the quantum numbers Ij are restricted to
the interval N /2� �Ij�� I�, where35

I� =
L − N

2
−
� − !

�

L

2
− N� . �6.16�

As we shall see, this implies a maximum momentum for
single-particle excitations with real rapidities. Note, how-

ever, that we also get real values of p0� � and �� � in Eqs.
�6.8� and �6.9� �therefore a scattering state of unbound qua-
siparticles� by taking complex rapidities of the form

 p = Re  p +
i�

2
. �6.17�

This is called a negative-parity one string.38 This type of

solution has quantum numbers in the interval Ĩ�� �Ip��L /2,
where

Ĩ� =
N

2
+
� − !

�

L

2
− N� . �6.18�

In the limit of large L, Eq. �6.7� becomes an equation for
the density of rapidities "� � �Ref. 14�

"� j� =
1

2�	p0�� j� +
1

L
�

k

K� j −  k� +
#p,h� j�

L � .

�6.19�

Here the sum is over all the quantum numbers between I−
and I+. The kernel K� � is given by

K� � = −
d�� �

d 
=

2 sin�2!�
1 − 2 cos2 ! + cosh�2 �

. �6.20�

The last term on the rhs of Eq. �6.19� is the scattering phase
shift between the particle at  j and the high-energy particle
or hole. In the case of a hole with real rapidity  h, we have

#h� � = − K� −  h� . �6.21�

In the case of a particle � p real or complex�, we have

#p� � = K� −  p� . �6.22�

In the thermodynamic limit, it is convenient to introduce

the shorthand notation for the integral operator K̂,

K̂ · f� �  �
−B

B

d �K� −  ��f� �� , �6.23�

where B= �I+=N /2� is the Fermi boundary. The density of
rapidities in the ground state �in the absence of the impurity�
is given by the Lieb equation


1 −
K̂

2�
� · "GS� � =

p0�� �
2�

. �6.24�

The Lieb equation has to be solved consistently with the
condition for the average density

�
−B

B

d "GS� � = n . �6.25�

The derivation of the finite-size spectrum is standard and
is detailed in Appendix A. The result for a single high-energy
particle is
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�E = �� p� +
2�v

L
	 ��N − nimp

p �2

4K
+ K�D − dimp

p �2� .

�6.26�

Here �� � is the dressed energy defined by the integral
equation14


1 −
K̂

2�
� · �� � = �0� � , �6.27�

and v is the renormalized velocity given by

v =
���B�

2�"GS�B�
. �6.28�

The phase shifts nimp
p and dimp

p are given by the integrals

nimp
p = �

−B

+B

d "imp� , p� , �6.29�

2dimp
p = �

−�

−B

d "imp� , p� − �
B

�

d "imp� , p� , �6.30�

where "imp is the solution to


1 −
K̂

2�
� · "imp� , �� =

K� −  ��
2�

. �6.31�

Comparing Eq. �6.26� with Eq. �6.6�, we conclude that �
is the dressed energy of the single particle

� = �� p� . �6.32�

The parameters of the unitary transformation, which set the
exponents of the correlation functions, are

�R,L
p

�
= nimp

p � 2Kdimp
p . �6.33�

For a single hole, we find �=−�� h�
0. The phase shifts for
the hole case are

nimp
h = − �

−B

+B

d "imp� , h� , �6.34�

2dimp
h = − �

−�

−B

d "imp� , h� + �
B

�

d "imp� , h� .

�6.35�

These formulas can be used to compute the exact param-
eters �R,L in Eq. �3.25� by solving the BA integral equation
for "imp in Eq. �6.31� for a given choice of particle rapidity
 p or hole rapidity  h. In order to analyze the results for
correlation functions as a function of momentum k, the latter
have to be chosen so that k� p,h�=k, where k� � is the
dressed momentum

k� � = p0� � − �
−B

B

d ��� −  ��"GS� �� . �6.36�

The function k� � is such that k��B�=�kF. Naturally, a
single-hole excitation has momentum in the range 0� �k� h

�R���kF. It follows from Eq. �6.36� that a single-particle
excitation with real rapidity has momentum in the range kF
� �k� p�R���k�, where

k� = kF + �� − !�
1 −
2kF

�
� . �6.37�

A particle excitation with complex rapidity of the form in Eq.
�6.17� has momentum in the range k�� �k� p=Re� p�
+ i� /2����. These three types of BA eigenstates cover the
Brillouin zone, as illustrated in Fig. 7. The value of momen-
tum k� is reached by taking Re� p�→�. From Eqs. �6.11�
and �6.27�, we can see that this is the point where the energy
of the single-particle excitation equals the absolute value of
the chemical potential

��k�� = �0� → �� = �	� . �6.38�

For 0�V�2, we have � /2�k���−kF.
Since � in Eq. �6.32� varies continuously with  p,h, the

velocity u in Eq. �3.14� is fixed by linearizing the dispersion
of the particle excitation around  p,h

u = �d�

dk
�
 p,h

=
��� p,h�
k�� p,h�

. �6.39�

In Appendix B, we show that nimp
p,h and dimp

p,h can also be
expressed in terms of the shift function as done in Ref. 16. In
the low-energy limit where the momentum of the particle or
hole approaches kF�� /2, i.e.,  p,h→B��, we use formu-
las �A23� and �A24� in Appendix A and obtain

�R
p,h

�
→ � �2�K − 1 − K� , �6.40�

�L
p,h

�
→ � �K − 1� . �6.41�

This implies that the exponent for the long-time decay of
Gp,h�k , t� in Eqs. �3.28� and �3.33� for k→kF is

��k → kF ��/2� = 1 − �K −
1

�K
+

1

2K
+

K

2
. �6.42�

Thus the exponent of the single-particle singularity of the
spectral function in the low-energy limit assumes the value

1 − ��k → kF ��/2� = �K +
1

�K
−

1

2K
−

K

2
. �6.43�

This low-energy exponent, expressed in terms of the Lut-
tinger parameter, is actually universal �see Ref. 12�. On the

λh ∈ R λp ∈ R Im(λp) =
π

2

kF k∞ π0 k

FIG. 7. Momentum ranges for the three types of excited states
considered in the BA calculations for 0�V�2. For �k��kF, the
simplest excitation is a single hole with real rapidity below the
Fermi boundary, � h��B. For kF� �k��k�, we add a single particle
with real rapidity � p�
B. For k�� �k���, we add a particle with
complex rapidity  p=Re p+ i� /2, �a negative-parity one string�.
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other hand, we showed in Ref. 15 that in the limit of half-
filling, kF→� /2, B→�, and �k� p,h���kF, we have

nimp
p,h → � �K − 1�, dimp

p,h → 0, �6.44�

independent of particle or hole momentum. In this limit, the
region of validity for the particle excitations with real rapidi-
ties shrinks to zero as I�→N /2=L /4 and k�→kF=� /2. The
single hole and negative-parity one string are still allowed

�Ĩ�→L /4�. As a result, in the limit of half-filling,

��k � kF��kF→�/2 →
K

2
+

1

2K
− 1  �ll. �6.45�

For comparison, the Luttinger liquid result for the particle
or hole Green’s function �the Luttinger model is particle-hole
symmetric due to the linearization of the dispersion� is6,39

G�x,t� = 	 eikFx

2��x − vt + i�
−

e−ikFx

2��x + vt − i��
� 	 2

x2 − �vt − i�2��ll/2
. �6.46�

Taking the Fourier transform to momentum space, we get the
long-time decay

G�k � kF,t� � t−�ll. �6.47�

Note that the exact exponent for the decay of Gp,h�k�kF , t�
in Eq. �6.42� is smaller than the Luttinger liquid exponent �ll.
The Luttinger liquid result for the singularity of the spectral
function on the single-particle energy is6,7

A�k,� � v�k� � �k�ll/2�� − v�k�−1+�ll/2, �6.48�

where �kk−kF. Interestingly, according to Eq. �6.45�, in
the limit of half-filling the exact exponent � of the long-time
decay of Gp�k , t� �for �k�
kF� or Gh�k , t� �for �k��kF� be-
comes independent of k �for any k in the entire Brillouin
zone� and coincides with the Luttinger liquid exponent �ll.
However, the exact exponent for the single-particle singular-
ity of A�k ,�� still differs from the Luttinger liquid result
�note the factor of 1/2 in Eq. �6.48� compared to Eqs. �3.31�,
�3.32�, and �3.35��. The difference stems from the fact that in
the Luttinger model the singularity of the spectral function at
��v�k is controlled by the singularity of the Green’s func-
tion in the vicinity of the light cone x�−vt, rather than by
the exponent for t� �x�.

That the half-filling exponent can be expressed solely in
terms of the Luttinger parameter is a peculiarity of the inte-
grable model. The exception is the model with V=2, which
is equivalent to the Heisenberg spin chain. If additional in-
teractions which break integrability still respect SU�2� sym-
metry, the exponent �=�ll=1 /4 for K=1 /2 is universal.47

B. One-two-string one-hole excitations

The Bethe equations in Eq. �6.7� admit solutions with a
pair of complex rapidities of the form

 s = w + i!/2,  s
� = w − i!/2, w � R . �6.49�

An eigenstate with two particles described by such pair of

rapidities is called a two-string.20 The fact that ei�� s− s
��=0

guarantees that the wave function of the two-string is nor-
malizable and describes a two-particle bound state.

From Eqs. �6.8� and �6.11�, we have that the bare momen-
tum and energy of the two-string are

P0�w� = p0� s� + p0� s
�� = i log	−

sinh�i! + w�
sinh�i! − w�� .

�6.50�

E0�w� = �0� s� + �0� s
�� = −

2 cos ! sin2 !

cosh2 w − cos2 !
− 2	 .

�6.51�

Note that the bare momentum of the two-string is restricted
to the interval

�P0�w� − ��mod 2�� � − 2! . �6.52�

If the two-string is added to the ground state of N fermi-
ons, the renormalized momentum and energy must include
the backflow of the ground state. In analogy with Eqs. �6.27�
and �6.36�, the dressed momentum and energy of the two-
string excitation are

P�w� = P0�w� − �
−B

+B

d �$�w −  ��"� �� , �6.53�

E�w� = E0�w� + �
−B

+B d �

2�
K�w −  ���� �� , �6.54�

where

$�w� = ��w + i!/2� + ��w − i!/2� , �6.55�

K�w� = K�w + i!/2� + K�w − i!/2� . �6.56�

One can then verify that the dressed momentum is restricted
to

�P�w� − ��mod 2���bs, �6.57�

where

�bs  � − P�− �� = �� − 2!�
1 −
2kF

�
� . �6.58�

This fixes the momentum range for the bound-state band
alluded to in Sec. IV. The minimum value of momentum k
for which a one-two-string one-hole excitation exists is

kb = kF + 2!
1 −
2kF

�
� . �6.59�

Moreover, it is easy to show that the energy of the bound
state at the edge of the bound-state band is

E�P = ���bs� = E�w → ��� = 2�	� . �6.60�

In the limit of half-filling, kF→� /2, the bound-state band
shrinks to zero ��bs→0� for arbitrary values of the interac-
tion strength and the region of validity of the power-law
singularity vanishes.
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The phase shifts at the Fermi boundaries due to the cre-
ation of a two-string can be calculated by the methods de-
scribed in Sec. VI A. Defining �imp� ,u� by the integral
equation


1 −
K̂

2�
� · �imp� ,w� =

K� − w�
2�

, �6.61�

we can write the phase shifts that enter the finite-size spec-
trum as

nimp
bs = �

−B

+B

d �imp� ,w0� , �6.62�

2dimp
bs = �

−�

−B

d �imp� ,w0� − �
B

�

d �imp� ,w0� ,

�6.63�

where w0 is chosen such that P�w0�= P0 for a bound state
with center-of-mass momentum P0. By correspondence with
the finite-size spectrum of the field theory, the parameters of
the unitary transformation that determine the exponents in
Eq. �4.36� are given by

�R,L
bs

�
= nimp

bs � 2Kdimp
bs . �6.64�

The velocity of the bound state is obtained by linearizing
the dispersion about w0,

ubs =
E��w0�
P��w0�

. �6.65�

VII. DENSITY MATRIX RENORMALIZATION GROUP
RESULTS FOR FERMION GREEN’S FUNCTION

A. Method

We used real-time DMRG methods �tDMRG� to calculate
the spectral functions for this system. The typical size of the
systems studied was L=400. The main details of the tech-
niques used were described briefly in Ref. 15, and in consid-
erable detail in Ref. 40. Here we summarize the method, and
also discuss a finite-size issue which did not come up in the
earlier work, and how we treat it.

After finding the ground state with ground-state DMRG,
an operator � or �† was applied to a site in the center, and
the resulting solution to the time-dependent Schrödinger
equation was used to calculate a space-time-dependent hole
Green’s function

Gh�x,t� = �� j+x
† �t�� j�0�� �7.1�

or the particle Green’s function

Gp�x,t� = �� j+x�t�� j
†�0�� �7.2�

for t
0 out to a particular time T�20–30. The hole and
particle Green’s functions each require a separate simulation.
The result was Fourier transformed in space. For each de-
sired wave vector k, the resulting time-dependent functions

Gp,h�k , t� as defined in Eqs. �3.22� and �3.33� were either fit
to an asymptotic long-time form and extrapolated to very
long times using it or extrapolated to long times using a very
general method called linear prediction. In both cases, a fast
Fourier transform was used to obtain high-resolution spectra.
The asymptotic form also gave directly exponents character-
izing the frequency singularities. Typically, we specified a
truncation error of 1�10−8 to set the number of states kept
per block m, with an additional constraint m�1500. These
parameters were varied to determine errors in Gp,h�x , t�, and
the typical errors for the parameters used were 1�10−4–1
�10−5. The functions Gp,h�x , t=0� decay as a power law in
x, potentially giving large finite-size effects. However, these
tails in x only appear in the real part of Gp,h, and it is easy to
reconstruct the entire spectrum from only the imaginary part
when the particle and hole Green’s functions are treated
separately. The support of the imaginary part spreads out
from the center site with a speed given by the maximum
velocity vm as a function of k of the hole or particle; finite-
size effects are small as long as vmT�L /2. The long tails in
x are associated with ��0; the determination of spectra us-
ing only the imaginary part generates an odd function in
frequency, eliminating the �=0 contribution.

Another finite-size effect comes from the Friedel oscilla-
tions induced by the boundaries of an open system in the
ground state. In Fig. 8, the solid dots represent the ground-
state density on each site �n�x�� of an open L=400 system
with a desired average density of 0.45. The open boundaries
induce oscillations in the density, which decay slowly away
from the ends. The density is directly related to Gh�x=0, t
=0�, and these oscillations introduce a finite-size error in this
system of order 1%. There are several ways one could sub-
stantially reduce the finite-size effects. The simplest �concep-
tually� would be to use periodic boundary conditions, which
can now be treated within DMRG with only a slight compu-
tational penalty.41 Because our most efficient computer pro-
gram for real time evolution does not incorporate the new
periodic algorithm, we have chosen to use smooth boundary
conditions �BCs�.42 For smooth BCs, one introduces a
chemical potential to set the density in the center of the sys-

190 200 210 220
x

0.445

0.45

0.455

<
n>

FIG. 8. �Color online� Local density �n�x�� in the ground state
for an average density of n=0.45 and interaction strength V=1, near
the center of a system with system size L=400. Dashed line with
dots: open boundary conditions; solid line: smooth boundary
conditions.
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tem, but one still works with a fixed number of particles. The
parameters of the Hamiltonian and the chemical potential are
held fixed at bulk values in a central region of the system,
but near the edges they are scaled down to zero smoothly;
see Fig. 9. The basic smoothing function by which the pa-
rameters were multiplied �after scaling and shifting� was

s�x� =
1

2
�1 + sin	�

2
cos��x��� , �7.3�

which falls smoothly from 1 to 0 over 0�x�1, and has
three vanishing derivatives at the end points. The smoothing
regions were one fourth the lattice length at each end. The
smooth boundaries allow the central bulk region to minimize
its energy, largely eliminating the Friedel oscillations, at the
expense of large oscillations near the low-energy edges. The
chemical potential allows one to fix the bulk density to any
value, even irrational. One sets the overall number of par-
ticles to the integer giving the closest overall density, and the
system adjusts the density at the edges to give a density in
the center determined by the chemical potential. �This means
that a number of ground-state-only runs must be done to
determine the correct chemical potential for the given den-
sity; these contribute little to the overall computational cost.�
The smooth connection between the boundary region and the
bulk is essential to avoid artifacts there. Figure 8 shows the
resulting ground-state density, with acceptably small oscilla-
tions in the central region. The real-time evolution is per-
formed using the smoothed Hamiltonian. The evolution
should be stopped before the signal initiated by � or �† in
the center reaches the edge of the bulk region. We have
checked how well the smooth BCs perform in determining
the correct thermodynamic limit Green’s function in the case
of V=0, where one can obtain numerically exact results from

diagonalizing and manipulating L�L matrices. We find
finite-size errors of 1�10−3–1�10−4 for the size systems
we use.

The smooth BCs duplicate the behavior of a very large
system in another respect: the entanglement entropy, which
governs the number of states kept per block m for a given
error, is significantly larger than with open BCs for a given
L. We have not studied this interesting effect in detail. We
may obtain a simple understanding of this effect by consid-
ering two weakly coupled spins at the two ends of a Heisen-
berg antiferromagnetic spin chain of even length. If these end
spins are sufficiently weakly coupled then they will form a
singlet together in the ground state, whereas all other spins
go into a complicated “resonating valence bond” state. This
long range singlet increases the entanglement of the left and
right halves of the system. Related entanglement phenomena
in the case of a single weakly coupled spin were studied in
Ref. 56. We were able to increase the number of states kept
sufficiently to obtain accurate spectral functions despite the
larger entanglement. An intuitive picture explaining this ef-
fect is that the smooth wave function might be written as a
superposition of a nontranslationally invariant wave func-
tion, such as shown by the circles in Fig. 8, with translations
of itself, sufficient to eliminate the static oscillations. If this
idea is roughly right, then one might obtain accurate spectra
by using one open BC lattice, but averaging over the starting
point where � or �† is initially applied, say, with a Gaussian
envelope of width 5–10, to smooth out the effect of the os-
cillations. We have tried this approach as another check on
the smooth BC results. It requires at least 5–10 runs, one for
each starting point, but each has low entanglement. The re-
sults were quite satisfactory, giving good agreement with the
smooth BC results.

B. Results

We have used the BA integral equations in Sec. VI to
numerically evaluate the dressed energies �� � and E�w� of
the elementary excitations for the model with V=1 and n
=0.2. The values of some important parameters are presented
in Table I. Note that for V=1 we have kb=k� so the range of
momentum where the bound-state contribution exists coin-
cides with the range where the single-particle excitation is
described by a negative-parity one string. The result for the
dispersion of the single-particle excitations and the lower
threshold of the one-two-string one-hole continuum is shown
in Fig. 10. We find that for n=0.2 and V=1, the velocity of
the two-string equals the renormalized Fermi velocity at P0

�

�3.342��+�bs. As a result, the nature of the bound-state
singularity changes at k= P0

�−kF�2.714 �see Fig. 10�.
Using the tDMRG method, we calculated both the particle

and hole Green’s function for the values n=0.2 and V=1 and

0 100 200 300 400
x

0

0.5

1

FIG. 9. Smoothing function s�x� used in the DMRG runs with
smooth boundary conditions.

TABLE I. Parameters for the model with V=1 and n=0.2, obtained either from formulas given in Sec. VI
or from the numerical solution of the BA equations for finite Fermi boundary B.

h v K kF k� kb P0
�-kF

−2.542 1.343 0.873 0.628 1.885 1.885 2.714
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for times out to T=37. The tDMRG results show that the
particle Green’s function Gp�k , t� becomes O�1� for �k�
kF.
Due to interactions, Gp�k , t� is nonzero for momenta below
the Fermi surface, but its amplitude is much smaller. Simi-
larly, the hole Green’s function is O�1� for �k��kF. We re-
strict our analysis to the ranges �k�
kF for the particle
Green’s function and �k��kF for the hole Green’s function.
As an example, Fig. 11 shows the tDMRG result for the
particle Green’s function Gp�k , t� for k=0.35�. This is in the
fast particle regime u
v. The numerical result is compared
with the field theory result of Eq. �3.28�, which predicts an
asymptotic behavior with oscillations at a single frequency

and pure power-law decay. The BA fixes the frequency,
phase, and exponent of the decay of Gp�k , t�. Such very good
agreement of Eq. �3.28� with the tDMRG result is typical for
k values in the regime u
v. This lends support to the con-
jecture that the decay rate 1 /� discussed in Sec. VII A is
exactly zero for the integrable model.

Similar results with a pure power-law decay are obtained
for the hole Green’s function Gh�k , t�. In this case we expect
1 /� to vanish due to kinematic constraints since the single
hole is at the threshold of the multiparticle continuum. �The
exact edges of the support can be determined from the dis-
persion in Fig. 10 and are similar to the curves in Fig. 2�a�.�

For contrast, we show in Fig. 12 the tDMRG results for
the particle Green’s function for k=0.85�. The data is typical
of that for values of k near � and shows the presence of two
dominant frequencies in the long-time behavior.

By utilizing the linear extrapolation method described in
Ref. 40, we computed the Fourier transform of the real time
tDMRG data to produce line shapes for the spectral function
without any analytical input. We confirm the simple behavior
of the hole spectral function, with a single sharp peak on the
single-hole energy. We thus focus on the particle part of the
spectrum, which shows a more interesting behavior. The re-
sults for k%0.35� are shown in Fig. 13. The energies of the
peaks in the tDMRG results agree with the energies pre-
dicted by the BA solution shown in Fig. 10. The single-
particle peaks remain sharp for fairly large values of k−kF
which are in the regime u
v �k�2.31 according to the BA
dispersion in Fig. 10�. On the other hand, the broadening of
the single-particle peak is apparent for the larger values of k,
near k=�. This happens in the slow particle regime u�v,
where we expect a nonzero decay rate due to the process
discussed in Sec. V B.

The second peak associated with the one-bound-state one-
hole excitation shows up for momentum k
kb, as predicted
by the BA. For k near kb, the second peak is small and broad
and hardly visible in Fig. 13. This may be explained quali-
tatively by arguing that when the velocity of the two-particle
bound state is smaller than the Fermi velocity, the decay of
the bound state by scattering of one low-energy particle-hole
pair is kinematically possible �for reasons analogous to the
arguments given in Sec. V B�, so the edge singularity may
actually be broadened.

As k increases toward k=�, spectral weight is transferred
from the single-particle peak to the bound-state hole con-
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FIG. 10. �Color online� Exact single-particle dispersion and
lower threshold of the one-two-string one-hole continuum for inter-
action strength V=1 and fermion density n=0.2. The curve �
=��k� is divided into the hole region �k�kF� and two particle re-
gions �particle excitations with real rapidities for kF�k�k� and
complex rapidities for k��k���. The dashed line is a cosine func-
tion fitted to the hole region of the spectrum, showing that the
renormalized dispersion deviates from the cos k dependence. The
one-two-string one-hole continuum is defined for kb�k�� �see
text�. For kb�k�P0

�−kF, the lower threshold is defined by a hole at
kF and a two-string with momentum k+kF. For P0

�−kF�k��, the
lower threshold is defined by a deep hole and a two-string with the
same velocity.

0 10 20 30 40
t

-1

-0.5

0

0.5

1

R
e

G
p(k

=
0.

35
π,

t)

FT+BA
DMRG

FIG. 11. �Color online� Real part of the particle Green’s function
Gp�k=0.35� , t� for V=1 and n=0.2. Red dots are numerical tD-
MRG results and solid line �FT+BA� is the field theory result of
Eq. �3.28� with parameters computed from the Bethe ansatz: fre-
quency �BA=0.8105, exponent �BA=0.0097, and phase �L

BA−�R
BA

=0.0076. Only the amplitude has been fitted. If we fit the DMRG
results for t
5 with four free parameters, we find the best fit for
�DMRG=0.8104, �DMRG=0.0109, and �L

DMRG−�R
DMRG=0.0074.
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FIG. 12. �Color online� tDMRG result for the real part of the
particle Green’s function for V=1, n=0.2, and momentum k
=0.85�. The line is a guide to the eye.
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tinuum. The second peak also becomes sharper with increas-
ing k, in accord with a stronger power-law singularity in the
regime, where the lower threshold is defined by a bound state
and a deep hole with the same velocity �see Sec. IV�.

We obtain high-resolution spectral functions by using the
asymptotic behavior predicted by the field theory to extend
the tDMRG data to arbitrarily large t before computing the
Fourier transform. The result of this combination of methods
is illustrated in Fig. 14 for the particle spectral function in
the fast particle regime, u
v. In Fig. 15 we show the hole
spectral function for a different value of density, n=0.45.
�For n=0.2, the maximum energy of a hole is small so the
tDMRG data with t�40 is not representative of the long-
time behavior.� While the spectral function exhibits a two-
sided power-law singularity on the single-particle energy, it
vanishes below the single-hole energy. These line shapes rep-
resent a high-energy extrapolation of the low-energy result of
Khodas et al.,11 except for the absence of broadening of the

single-particle peak. We are not able to access directly the
regime k�kF because in the low-energy limit the region of
validity of the power law in Eq. �3.31� becomes extremely
small. This means that it would be necessary to go to ex-
tremely large values of t in the tDMRG calculations in order
to observe the asymptotic behavior of Gp�k , t�. The contribu-
tion of the convergent edge singularities to the long-time
decay of Gp�k , t� is also rather small so we have not at-
tempted to extract the behavior near the multiparticle thresh-
olds where A�k ,�� vanishes.

We have also calculated the particle Green’s function for
the same V=1 and n=0.45, which is closer to half-filling. In
this case both hole and particle spectral function show a
single sharp peak at �=��k�. We have not observed a second
peak in the particle spectral function for k near �. This is in
agreement with the prediction that the contribution of the
one-bound-state one-hole excitation disappears as we ap-
proach half-filling �see Sec.VI B�.

Assuming a single frequency is able to describe the long-
time decay of particle and hole Green’s function, we fitted
the data to Eq. �5.21� in order to extract a possible nonzero
decay rate. Equation �5.21� is valid for k values in the regime
u�v, in which a single parameter fixes both phase and ex-
ponent. The results are shown in Fig. 16. We first note that
fitting the tDMRG data up to a maximum time T=20 is not
reliable near two points. The first point is k=kF, where the
frequency of the time oscillation vanishes. The second point
is k�1.897, where u�v according to the BA. Near this
point, the time scale for reaching the asymptotic decay also
diverges �see Eq. �3.27��. These two points are indicated by
vertical lines in Fig. 16. The agreement between the tDMRG
and BA exponents is expected to be best near k=0 for the
hole case and near k=� for the particle case.

For the hole Green’s function, we find a very good agree-
ment between the numerical exponent and the one predicted
by the BA. Moreover, in this case the numerical decay rate is
negligible ��1�10−4 for all values of k�kF�. For the par-
ticle Green’s function, the agreement between BA and tD-
MRG exponents is not as good as for the hole case. This is
expected given that we are fitting with two small parameters,
the power-law decay exponent, and the decay rate. We have
checked that fitting the tDMRG results with the exponents
constrained by the BA works as well as fitting with uncon-
strained exponents. Thus the oscillations in the tDMRG ex-
ponents in Fig. 16 are believed to be due to the error in the
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FIG. 13. �Color online� Particle spectral function Ap�k ,�� for
V=1, n=0.2, and k /�=0.35,0.4,0.45, . . . ,1, obtained by Fourier
transforming the tDMRG data using the linear extrapolation
method. The curves for different values of k are shifted vertically �k
increases from bottom to top�. The horizontal dotted line �k
�2.31� separates the regime u
v from the regime u�v. For kF

�k�kb, there is only one peak at the energy of the single-particle
excitation. For kb�k��, there appears a second peak, which we
interpret as due to a two-particle bound state and a free hole. The
energy of the second peak is nonmonotonic in k and has a minimum
at k=�−kF. The dashed lines are the BA predictions for the disper-
sion relations in Fig. 10.
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FIG. 14. �Color online� Spectral function in the vicinity of the
single-particle energy for V=1, n=0.2, and k=0.35�, obtained by
extending the tDMRG data shown in Fig. 11 to long times using the
field theory formulas and then taking the Fourier transform.
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FIG. 15. �Color online� Spectral function in the vicinity of the
single-hole energy for V=1, n=0.45, and k=0.01�, obtained by
extending the tDMRG data as in Fig. 14.
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fitting. Nonetheless, the tDMRG results clearly show that the
decay rate 1 /� is nonzero for a high-energy particle in the
regime u�v. The results also suggest that 1 /� decreases as k
approaches the value where u=v, possibly vanishing at the
lower threshold. We note that the behavior of the BA expo-
nent is qualitatively similar to the expected from the weak-
coupling expressions in Eq. �3.17�.

Finally, we point out that the long-time behavior of the
fermion Green’s function in real space is dominated by a
saddle-point contribution.15 The latter corresponds to a hole
at the bottom of the band, k=0, in the case of the hole
Green’s function, or to a particle at the top of the band, k
=�, in the case of the particle Green’s function. The high-
energy excitations near these points have parabolic disper-
sion ��k���+k2 /2m, where m�0 is the renormalized mass.

Thus the propagator for the decoupled d̄ particle in Eq.
�3.26� reads

Gp
�0��x,t� �� m

2�it
e−i��t−imx2/2t. �7.4�

Therefore, in the noninteracting case, this contribution to the
particle Green’s function oscillates at a high frequency ��
�O�1� for t� �m�x2 and decays as 1 /�t. In the interacting
case, the frequency of the oscillation becomes the renormal-
ized energy of the single particle with momentum k=�. In
addition, the exponent is modified by the coupling to the
low-energy modes. In the case of the particle Green’s func-
tion, there is also an exponential decay associated with the
decay rate 1 /�� of the particle at k=� when the model is
below half-filling. The long-time behavior of the particle
Green’s function is then given by

Gp�x,t � x/v, �m�x2� �
Ae−i��t−t/��

t�
+

B

t1+�ll
. �7.5�

Here A and B are complex amplitudes. The second term in
Eq. �7.5� is the standard Luttinger liquid result, which does
not oscillate in time. The renormalized exponent of the high-
energy term is

� = 1/2 + ��k = �� , �7.6�

with ��k� given by Eqs. �3.25� and �3.29�. This is smaller
than the exponent of the Luttinger liquid term; however, for
t
�� the high-energy term in Gp�x , t� decays exponentially.
We note that both a particle at k=� and a hole at k=0 couple
symmetrically to the low-energy modes at the two Fermi
points; hence �R�k=0,��=�L�k=0,��. Below half-filling the
hole Green’s function decays as

Gh�x,t � x/v, �m�x2� �
A�e−i�0t

t0
+

B�

t1+�ll
, �7.7�

with 0=1 /2+��k=0� and no exponential decay of the high-
energy contribution.

At half-filling, the particle and hole Green’s functions are
equivalent. In this case, we have analytical expressions for
the frequencies and exponents,15

�0 = �� =
��1 − �V/2�2

arccos�V/2�
, �7.8�

0 = � = 1/2 + �ll, �7.9�

where �ll= �K+K−1−2� /2 with the Luttinger parameter3

K =
�

2�� − arccos�V/2��
. �7.10�

Moreover, the decay rate 1 /�� vanishes at half-filling.
We have calculated the fermion Green’s function G�x

=0, t� at half-filling and for various values of interaction
strength V using tDMRG. We used simulated annealing to fit
the numerical results to the formula

G�x,t� �
Ae−i�DMRGt

tDMRG
+

B

t�DMRG
. �7.11�

The results are shown in Table II. We find good agreement
with the analytical BA predictions of Eqs. �7.8� and �7.9� for
all values of V.

VIII. DYNAMICAL STRUCTURE FACTOR

The methods used in this work can be generally applied to
the study of singularities of dynamical correlation functions.
The basic idea is to identify the excitations which define the
thresholds of the spectrum in the noninteracting limit and
then ask how interactions between the particles in the final
state affect the behavior of the dynamical function near the
threshold. This can be answered with the help of effective
models such as Eqs. �3.14�. One quantity of interest is the
dynamical structure factor

0 0.5 1
k/π

0

0.05

0.1

0.15

0.2 ν
DMRG

(hole)

ν
BA

(hole)
ν

DMRG
(particle)

ν
BA

(particle)

τ-1
(particle)

FIG. 16. �Color online� Exponent of the particle �for k
kF� or
hole �for k�kF� Green’s function for n=0.45 and V=1. The solid
lines represent the exponents extracted from tDMRG by fitting the
data in the time interval 10� t�20 to Eq. �5.21�. The dotted line is
the decay rate of the single particle extracted from the fitting. The
dashed lines represent the exponent calculated numerically from the
BA. The dot at k=kF indicates the universal low-energy exponent in
Eq. �6.42�. The vertical lines indicate the values of momentum k
=kF=0.45� and k�1.897, near which the tDMRG exponents are
least reliable.
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S�q,�� =
1

L
�
j,j�

e−iq�j−j���
−�

�

dtei�t�nj�t�nj��0�� . �8.1�

The dynamical structure factor for the Galilean invariant
model was studied in Ref. 10. In the lattice model, S�q ,�� is
equivalent to the longitudinal dynamical spin structure factor
of spin-1/2 chains.15 A particular interesting case from the
point of view of experiments is the model with V=2, which
is equivalent to the Heisenberg spin chain

H = J�
j=1

L

S� j · S� j+1. �8.2�

In this section we discuss qualitatively the implications of
our results on the spectral function for the line shape of
S�q ,�� away from half-filling.

The excitations which give the dominant contribution to
the dynamical structure factor were identified by Müller et
al.43,44 In the noninteracting case, the region where S�q ,�� is
nonzero is given by the particle-hole continuum shown in
Fig. 17 for n=0.4. For small momentum, q��−2kF, S�q ,��
is similar to the result for the Galilean invariant model.35

Instead of discussing all possible cases, here we focus on the
momentum range �−2kF�q�2kF. In this case there are
three important thresholds. Let us denote by k the momen-
tum of the hole so the momentum of the particle is k+q. The
lower threshold �L�q� of the particle-hole continuum is de-
fined by a deep-hole excitation composed of a particle with

momentum kF and a hole with k=kF−q. The upper threshold
�U�q� is defined by the particle-hole excitation which is
symmetric about � /2, i.e., k= ��−q� /2. There is yet a third
threshold �M�q�, situated between �L�q� and �U�q�, defined
by a high-energy particle with momentum k+q=kF+q and a
hole at kF.

The exact S�q ,�� for the noninteracting model in the
range �−2kF�q�2kF is45

S�q,�� =
���U�q� − ������ − �L�q�� + ��� − �M�q���

��U
2 �q� − �2

.

�8.3�

According to Eq. �8.3�, S�q ,�� has step discontinuities both
at �L�q� and �M�q�. The spectral weight jumps by a factor of
two at �M�q� because for �
�M�q� there are two choices of
hole momentum k corresponding to the same energy. For
�L�q�����M�q�, there is only one choice of k for each �.
At the upper threshold �U�q�, S�q ,�� has a square-root di-
vergence which stems from the divergent joint density of
states of a particle and a hole with the same velocity.

In the limit of half-filling, kF→� /2, the deep hole exci-
tation and the high-energy particle excitation for the same q
become degenerate. The intermediate threshold merges with
the lower threshold and one recovers a single step function at
�L�q�.44

By analogy with the ansatz for the Heisenberg chain at
zero magnetic field, Müller et al.43 proposed that in the pres-
ence of repulsive interactions, the two step discontinuities
should become divergent edge singularities. This was argued
to explain the double peak structure observed in the dynami-
cal structure factor of spin chain compounds at finite field.46

The picture of a line shape with two peaks at �L�q� and
�M�q� is supported by the field theory approach to the edge
singularities of S�q ,��. The divergence at the lower thresh-
old is easily understood as an x-ray edge singularity for the
deep hole excitation.10 For the upper threshold, it is known
that at half-filling, repulsive interactions turn the square-root
divergence into a universal square-root cusp.15 The reason is
the resonant scattering between the high-energy particle and
hole with the same velocity, which is analogous to the prob-
lem of Wannier excitons in semiconductors.27 Away from
half-filling, the square-root divergence still becomes a con-
vergent singularity. However, the behavior near �U�q� is not

TABLE II. Exponents and frequencies for the fermion Green’s function G�x=0, t� at half-filling and for
V=0.25,0.5,0.75,1 ,1.5. The parameters �DMRG, DMRG, and �DMRG were obtained by fitting the DMRG
results to Eq. �7.11�. The other parameters are analytical BA predictions and should be compared with the
adjacent DMRG results.

V K �DMRG �0 DMRG 0 �DMRG 1+�ll

0 1 2 0.5 1

0.25 0.926 2.156 2.156 0.503 0.503 0.985 1.003

0.5 0.861 2.308 2.308 0.510 0.511 0.986 1.011

0.75 0.803 2.454 2.454 0.523 0.524 1.002 1.024

1 0.75 2.598 2.598 0.539 0.542 1.013 1.042

1.5 0.649 2.876 2.876 0.583 0.595 1.048 1.095
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FIG. 17. Particle-hole continuum for the noninteracting model
with n=0.4. The dynamical structure factor S�q ,�� is nonzero in
the shaded area.
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exactly a square-root cusp because in the absence of particle-
hole symmetry the high-energy particle-hole pair does not
decouple from the Fermi-surface modes.15

The behavior near �M�q� is controlled by the x-ray edge
singularity of a high-energy particle excitation with u�v.
Using the methods of Ref. 10, it is easy to show that S�q ,��
acquires a one-sided divergent power-law singularity above
�M�q�. The exponent of this singularity is different from the
one at the lower threshold. Using the weak-coupling expres-
sion for the phase shifts, we can show that the exponent at
�M�q� to first order in V is given by

	M�q� =
V�1 − cos q�

��sin kF − sin�kF + q��
. �8.4�

On the other hand, the exponent at �L�q� to O�V� is

	L�q� =
V�1 − cos q�

��sin kF − sin�kF − q��
. �8.5�

For q
�−2kF, we have

	M�q� 
	L�q� . �8.6�

However, based on the results of Sec. VII, we expect that
below half-filling the high-energy particle has a finite decay
rate 1 /� when u�v. Therefore, we predict that S�q ,�� has a
rounded peak rather than a divergence at �M�q�. A schematic
picture of this line shape is shown in Fig. 18.

In the limit kF→� /2, the peak at �M�q� approaches the
divergent singularity at �L�q�. At the same time, 	M be-
comes equal to 	L, as required by particle-hole symmetry. In
addition, at half-filling the decay rate of the high-energy par-
ticle vanishes �see Sec. VII B�. As pointed out in Ref. 16, the
range of validity of the exponent 	L shrinks to zero as kF
→� /2. This was argued to lead to a discontinuity in the
exponent, such that 	L�kF=� /2��	L�kF→� /2�. However,
what happens is not a crossover between two power-law sin-
gularities, as in the case of the spectral function,17 but rather
a collapse between two divergent singularities with the same
exponent. Our scenario predicts that S�q ,�� varies smoothly
as kF→� /2. At kF=� /2, one recovers the line shape with a
momentum independent exponent at the lower threshold,
	L=1−K.15 Indeed, the results of Ref. 47 show that the al-
ternative exponent 	L�kF=� /2� proposed in Ref. 16 is in-
consistent with universal relations for the phase shifts in the
low-energy limit and with the SU�2� symmetry of the model

for V=2. The correct exponent at half-filling is the one de-
rived in Ref. 15.

The line shape of S�q ,�� shown in Fig. 18 can be tested
by tDMRG calculations for the spin-spin-correlation func-
tion of the XXZ model at finite magnetic field or by direct
computation of form factors from the BA, including
negative-parity one-string excitations.35,48

Here we have only discussed the nature of the thresholds
defined by free particles and holes. We note that a recent BA
work has shown that two-string excitations �two-particle
bound states� give an important contribution to the transverse
dynamical structure factor of the spin-1/2 chain at finite mag-
netic field.49

IX. CONCLUSION

We have studied the spectral function of spinless fermions
on a 1D lattice using a combination of field theory methods,
Bethe ansatz, and time-dependent DMRG. We showed that
x-ray-edge-type effective models are able to explain the
long-time decay of the single-particle Green’s function and
the singularities of the spectral function calculated by tD-
MRG.

The results can be summarized as follows. In the lattice
model, the detailed line shape of the spectral function de-
pends strongly on momentum, density, and interaction
strength. Kinematically, the support of the spectral function
has finite-energy lower thresholds for general momentum k
only if kF /� is a rational number. If kF /� is irrational, so that
arbitrary umklapp scattering processes are incommensurate,
the spectral function is nonzero at all energies. In any case, a
general approximate picture for the line shape can be ob-
tained by focusing on the possible divergent singularities on
the single-particle energy or near multiparticle thresholds
which involve bound states.

Away from half-filling, the hole and particle contributions
to the spectral function are remarkably different. For kF
�� /2, the hole spectral function exhibits a single divergent
singularity above the single-hole energy. By contrast, the
particle spectral function can exhibit one or two peaks. The
single-particle peak is always present. In the regime where
the velocity of the high-energy particle is larger than the
Fermi velocity, the field theory predicts a divergence from
both sides of the single-particle energy. For a generic model,
this singularity is expected to be replaced by a broadened
peak due to decay processes involving three-body collisions.
For the integrable model we have found no compelling nu-
merical evidence of broadening of the single-particle peak in
this regime, even at fairly high energies, suggesting an exact
power-law singularity.

However, at higher values of momentum, for which the
velocity of the high-energy particle is smaller than the Fermi
velocity, we found that the single-particle peak has a nonzero
broadening. We interpret this in terms of a decay rate 1 /�
which is second order in the interaction strength and nonzero
even for the integrable model. In real time, the corresponding
particle Green’s function decays exponentially.

The second peak in the particle spectral function appears
at high energies, above the single-particle energy, and is

S(q, ω)

ωωL(q) ωM (q) ωU (q)

FIG. 18. Schematic illustration of the line shape of S�q ,�� for
�−2kF�q�2kF and small V. The most prominent features are the
divergent singularity at the lower threshold and the rounded peak at
the intermediate threshold.
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more pronounced for low densities and momentum near �.
This peak has a nonmonotonic dispersion relation, with an
energy minimum at k=�−kF. The nature of the second peak
can be understood as the singularity at the lower threshold of
the continuum defined by a two-particle antibound state and
a free hole.

The results of this work could be tested by measuring the
spectral function of fully spin-polarized fermions in optical
lattices. The most robust effect should be the observation of
the bound-state peak. In a photoemission experiment, where
one probes the hole contribution to the spectral function, the
bound-state peak should be visible at high densities �above
half-filling� and for strong interactions. In this case, it can be
interpreted as the process in which the outcoupled atom
leaves behind a hole plus a particle-hole excitation. While
the particle propagates freely, the two holes form a stable
repulsively bound pair in the p channel.
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APPENDIX A: FINITE-SIZE SPECTRUM

In order to derive the finite-size spectrum from the BA
equations, we start by expanding the sum in Eq. �6.19� for
large L using the Euler-Maclaurin formula14

"� � �
p0�� �
2�

+ �
B−

B+ d �

2�
K� −  ��"� �� +

#p,h� �
2�L

+
1

24L2	K�� − B+�
"�B+�

−
K�� − B−�
"�B−� � , �A1�

where we introduced the Fermi boundaries B�= �I��. We
organize the solution to Eq. �A1� by orders of 1 /L. We ex-
pand "� � up to O�1 /L2� in the form

"� � = "�� �B+,B−� �
1

L
"imp� , p,h�B+,B−� +

"1� �B+,B−�
24L2"�B+�

−
"1�−  �− B−,− B+�

24L2"�B−�
, �A2�

where the plus sign is for "imp� , p �B+ ,B−�, in the case of a
particle, and the minus sign for "imp� , h �B+ ,B−�, in the
case of a hole. Substituting Eq. �A2� into Eq. �A1�, we find
the integral equations for the terms in the expansion of "� �,

"�� �B+,B−� =
p0�� �
2�

+ �
B−

B+ d �

2�
K� −  ��"�� ��B+,B−� ,

�A3�

"imp� , ��B+,B−� =
K� −  ��

2�
+ �

B−

B+ d �

2�

�K� −  ��"imp� �, ��B+,B−� ,

�A4�

"1� �B+,B−� =
K�� − B+�

2�
+ �

B−

B+ d �

2�
K� −  ��"1� ��B+,B−� .

�A5�

Note that Eqs. �A3�–�A5� still contain terms of O�1 /L�, im-
plicit in the shifts of the Fermi boundaries due to the creation
of the high-energy particle as well as the low-energy charge
and current excitations. Let us denote by B= �I+=−I−
=N /2� the Fermi boundary for the ground state of N fermi-
ons. Then,

�B+  B+ − B � O�1/L� , �A6�

�B−  B− + B � O�1/L� . �A7�

To zeroth order in 1 /L, Eq. �A3� becomes the Lieb equation
Eq. �6.24�.

We introduce the resolvent operator L̂ formally by

�1 + L̂� · 
1 −
K̂

2�
�� , �� = 1, �A8�

L� � �� −
1

2�
�

−B

+B

d �L� � ��K� � −  �� =
K� −  ��

2�
.

�A9�

To zeroth order in 1 /L, Eq. �A4� becomes Eq. �6.31�, with
"imp� , ��="imp� , � �B ,−B�. By comparison with Eq.
�A9�, we have

"imp� , �� = L� � �� . �A10�

The ground-state energy �without the impurity� in the
thermodynamic limit is

EGS = L�
−B

+B

d �0� �"GS� � . �A11�

Consider a state with a single high-energy particle  p and
general Fermi boundaries B�. �The derivation is similar for
the case of a single hole.� The energy is

E = �
j

�0� j� + �0� p� , �A12�

where the sum runs over all quantum numbers Ij between I−
and I+. We expand Eq. �A12� using the Euler-Maclaurin for-
mula and obtain

E � L�
B−

B+

d ��0� ��"� �� + �0� p�

−
1

24L
	 �0��B+�
"�B+�

−
�0��B−�
"�B−� � . �A13�

The next step is to expand Eq. �A13� up to O�1 /L� using the
expansion of "� � in Eq. �A2� and assuming �B��O�1 /L�.
We find

E = EGS + �� p� −
�v
6L

+
�v
L
"GS

2 �B���L�B+�2 + �L�B−�2� .

�A14�
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The third term on the rhs of Eq. �A14� is the standard
finite-size correction to the ground-state energy of a confor-
mal field theory with central charge c=1. The difference be-
tween the energy of the excited state and the ground-state
energy is

�E = �� p� +
�v
L
"GS

2 �B���L�B+�2 + �L�B−�2� . �A15�

Now we evaluate the Fermi boundary shifts �B�. From
Eq. �6.14�, we can write

N

L
= n +

�N

L
=

I+ − I−

L
= �

B−

B+

d "� � . �A16�

Similarly, from Eq. �6.15�,

2D

L
=

I+ + I−

L
=

1

L
�
i�I−

1� −
1

L
�
i
I+

1�
= �

−�

B−

d "� � − �
B+

+�

d "� � . �A17�

Expanding the rhs of Eqs. �A16� and �A17� to O�1 /L�, we
obtain

�N

L
=

nimp
p

L
+ ��B+ − �B−�"GS�B�Z�B� , �A18�

D

L
=

dimp
p

L
+ ��B+ + �B−�"GS�B�&�B� . �A19�

with nimp
p and dimp

p defined in Eqs. �6.29�. The function Z� �
is the dressed charge defined by


1 −
K̂

2�
� · Z� � = 1. �A20�

The value of Z� � at the Fermi boundary is related to the
Luttinger parameter by K=Z2�B�.14 The function &� � is de-
fined by

2&� � = 1 − �
B

�

d �L� � �� + �
−�

−B

d �L� � �� . �A21�

One can verify that the value of &� � at the Fermi boundary
satisfies

2Z�B�&�B� = 1. �A22�

Using the definitions of Z� � and &� �, together with Eq.
�A10�, we can write

nimp
p,h = � �Z� p,h� − 1� . �A23�

2dimp
p,h = � �2&� p,h� − 1� . �A24�

Finally, substituting Eqs. �A18� and �A19� into Eq. �A15�,
we arrive at the finite-size spectrum

�E = �� p� +
2�v

L
	�N − nimp

p

2Z�B� �2

+
2�v

L
Z2�B��D − dimp

p �2.

�A25�

APPENDIX B: PHASE SHIFTS IN TERMS OF
SHIFT FUNCTION

Here we prove the equivalence between our results15 in
Eq. �6.29� and �6.30� and those of Cheianov and Pustilnik16

in terms of the shift function. The shift function F� � �� is
defined as the solution of the integral equation14


1 −
K̂

2�
� · F� � �� =

�� −  ��
2�

. �B1�

Upon application of the integral operator on Eq. �A21�, we
find that &� � obeys the equation


1 −
K̂

2�
� · &� � =

1

2
+
�� + B�

2�
, �B2�

from which we obtain the relations

&� � =
Z� �

2
+ F� �− B� , �B3�

&�−  � =
Z� �

2
− F� �B� . �B4�

Using Eq. �A21�, we can also show that

&� � + &�−  � = 1. �B5�

Hence from Eqs. �A23� and �A24�, it follows that

nimp
h = F� �− B� − F� �B� , �B6�

2dimp
h = − F� �B� − F� �− B� . �B7�

By taking the derivative of Eq. �B1� with respect to  and
integrating either inside or outside the Fermi boundaries, we
can show that

Z�B��F�B� � − F�− B� �� = Z� � − 1, �B8�

2&�B��B��F�B� � + F�− B� �� = 2&� � − 1. �B9�

We then obtain

nimp
h = − Z�B��F�B� � − F�− B� �� , �B10�

dimp
h = − &�B��F� �B� + F�− B� �� . �B11�

Finally, using Z�B�= �2&�B��−1=�K, we can write the phase
shifts in Eq. �6.33� in the form

�R,L
h = � 2��KF��B� h� . �B12�

Equation �B12� is equivalent to Eq. �14� of Ref. 16 for any
finite value of B �away from half-filling�.

APPENDIX C: TWO-SPINON SPECTRAL WEIGHT FOR
THE ZERO-FIELD HEISENBERG MODEL

NEAR q=�

In this appendix we determine what fraction of the total
spectral weight is given by the two-spinon contribution to the
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dynamical structure factor in the zero-field Heisenberg
model of Eq. �8.2� at q�� and low frequencies. The calcu-
lation is based on a combination of Luttinger liquid and ex-
act integrability techniques. Band curvature effects are com-
pletely ignored in the Luttinger liquid treatment. This
appears to be valid near q=2kF=� for the case of zero mag-
netic field �half-filled band in the fermion model; see Sec.
VIII�.

Based on Luttinger liquid methods it was argued50,51 that
the asymptotic behavior of the equal-time spin-correlation
function for the zero-field Heisenberg model is

G�x,0� = �Sj+x
z Sj

z� �
�− 1�xln1/2��x�/a�

�x�
. �C1�

Here a is a number of order 1. Later, the exact amplitude was
determined:52,53

G�x,0� →
�− 1�xln1/2��x�/a�

�2��3/2�x�
. �C2�

The field theory methods indicate50 that G�x , t� is asymptoti-
cally a Lorentz scalar, depending only on x2−v2t2. This is
true including the logarithmic corrections since they arise
from a Lorentz invariant marginal term in the low-energy
effective Hamiltonian. Therefore, the extension to the time-
correlation function is

G�x,t� →
�− 1�xln1/2��x2 − v2�t − i��2�/a2�

4�3/2�x2 − v2�t − i��2�1/2 . �C3�

Here �
0 is of order 1 /J. We now consider the Fourier
transform, giving the structure function. Let us first of all
ignore the log factor, setting it to one. Then we can do the
integral exactly by changing variables to vt�x and doing the
two integrals separately, both of which are Gaussian. This
gives

S�q,�� → ��� − v�q − ���
1

����2 − v2�q − ��2
, �C4�

for q�� and small �. We now include the log factor,

S�q,�� → ��� − v�q − ���
�ln�a2��2/v2 − �q − ��2���1/2

����2 − v2�q − ��2
.

�C5�

To see this we can change variables to

�vt � x���/v � q� = u�, �C6�

giving

S�q,�� =
1

8�3/2��2 − v2�q − ��2�1/2

� �
−�

�

du+du−
ei�u++u−�/2

�− �u+ − i���u− − i���1/2

� �ln	 − �u+ − i���u− − i��
a2���/v�2 − �q − ��2���1/2

. �C7�

We now Taylor expand in powers of ln�−u+u−�, integrating

term by term. The leading term gives Eq. �C5�.
To further justify this expression and understand an im-

portant subtlety, we compare S��+ p�, the equal-time struc-
ture factor, at small �p�, obtained either by Fourier transform-
ing Eq. �C1� or by integrating Eq. �C5� over �,

S�q� =� dxe−iqxG�x� =� d�

2�
S�q,�� . �C8�

The first approach gives

S�� + p� =
1

�2��3/2�
�x�
a

dx
e−ipx ln1/2��x�/a�

�x�

=
2

�2��3/2�
a

�

dx cos�px�
ln1/2�x/a�

x
. �C9�

Note that this integral diverges at �x�→0 so it was necessary
to introduce a cutoff on the integration range. We have cho-
sen it to be a for convenience but do not expect the leading
behavior at p→0 to depend on this choice. We now approxi-
mate this integral by

S�� + p� =
2

�2��3/2�
a

c/�p�

dx
ln1/2�x/a�

x
, �C10�

where c is a constant of order 1. This is based on the ap-
proximation that for small p, cos px is approximately con-
stant and equal to 1 out to a large value of x of order 1 / �p�.
The integral can then be done exactly giving

S�� + p� →
4

3�2��3/2 ln3/2�c/�a�p��� . �C11�

�This result was obtained in Ref. 52.�
Now consider the second approach. Using �L�v�q−��,

and introducing the high-energy cutoff, D�1 /��J, we ob-
tain

S�� + p� =� 1

�
�
�L

D d�

2�

ln1/2�D2/��2 − �L
2��

��2 − �L
2

=� 2

�
�

0

�D2−�L
2 d��

2�

ln1/2�D/���
�����2 + �L

2

�� 2

�
�

0

D d��

2�

ln1/2�D/���
�����2 + �L

2

�� 2

�
�
�L

D d��

2���
ln1/2�D/���

=
4

3�2��3/2 ln3/2�D/�L� . �C12�

Here we have changed variables to ����2−�L
2, in the first

step, extended slightly the upper cutoff in the second, and
used the fact that the denominator can be approximated by
�� down to a value of order �L at which we may simply cut
off the integral, in the third step. The fact that Eqs. �C11� and
�C12� agree gives further confidence in these calculations.

The factors of 2/3 that arise from the integrals in both
approaches are rather subtle and easily missed by more crude
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approximations. In evaluating the integral of Eq. �C9�, for
example, it is tempting to follows the same procedure as we
used in evaluating the integral in Eq. �C7�, changing integra-
tion variables to uxp and approximating �ln u−ln ap�1/2

� ln1/2�1 /ap�. However, this would be incorrect, giving an
answer larger by a factor of 3/2. The fallacy with this ap-
proximation lies in the ultraviolet divergence of the integral
at small u of order ap. Since the integral receives important
contributions from this range of u it is not valid to drop the
ln u term inside the square root. The reason why we could
make this approximation in evaluating Eq. �C7� is that the
integral is ultraviolet finite.

Now let us compare Eq. �C5� to the exact two-spinon
result in Ref. 24. After correcting typos, precisely the same
asymptotic behavior, Eq. �C5�, is obtained at q�� and �
→0 except that it is smaller by a factor of �C, where �C
=0.849 829. Remarkably, the two-spinon approximation has
the same combination of power-law and logarithmic singu-
larities as does the exact result, but a smaller amplitude.

Reference 24 attempts to derive a formula for S�q� in Eq.
�6.15�. However, the tricky factor of 2/3 from the � integral
discussed above is missed. The correct two-spinon approxi-
mation to S�q� is

S�q� �
2

3

m0

2�
�− ln�1 − q/���3/2

=
2

3
�2C

�

1

2�
�− ln�1 − q/���3/2, �C13�

smaller by a factor of �C�0.85 than the exact answer. The
fact that the two-spinon approximation to S�q� at q�� un-
derestimates the correct answer by exactly the same factor,
0.849 829, as does the two-spinon approximation to S�q ,��
for q�� and small � is not surprising. It merely indicates

that the dominant contribution to the frequency integral is
from low frequencies. As was discussed in Ref. 24, the total
two-spinon intensity, integrated over all q as well as all �
underestimates the exact answer �1/4� by a factor of 0.7289.
So, we see that the two-spinon approximation does some-
what better at q near � than at other values of q.

Finally, we remark that the asymptotic behavior of the
finite-size equal-time-correlation function, with periodic
boundary conditions, can be written as54

G�x,0;L� →
�− 1�xln1/2��L/�a�sin���x�/L��

�2��3/2�L/��sin���x�/L�
. �C14�

The q=� finite-size equal-time structure function,

S��,L� �
2

�2��3/2�
a

L/2

dx
ln1/2��L/�a�sin��x/L��

�L/��sin��x/L�
,

�C15�

can be approximated as in Eq. �C10�, using the small x ap-
proximation to the integrand with some large x cutoff of
O�L�,

S��,L� �
2

�2��3/2�
a

cL dx

x
ln1/2�x/a� �

4

�2��3/2 ln3/2�L/a� .

�C16�

Approximately this result was obtained55 by density-matrix
renormalization group �DMRG� calculations, prior to the ex-
act results, with 1 / �2��3/2�0.063 293 6. . . replaced by
0.067 89. We may obtain the two-spinon estimate of this
quantity by replacing �q−�� by c /L in Eq. �C13�. Again this
is smaller than the exact result by the same factor of 0.85 and
thus smaller than the old DMRG result by 0.91 rather than
being disturbingly larger than the DMRG result as was stated
in Ref. 24, apparently due to missing the 2/3 factor.
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